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An upper bound on the heat flux for infinite-Prandtl-number convection between
two parallel plates is determined for the cases of no-slip and free-slip boundary
conditions. For no-slip the large-Rayleigh-number (Ra) scaling for the Nusselt number
is consistent with Nu<c Ra1/3, as predicted by Chan (1971). However, his commonly
accepted picture of an infinite hierarchy of multiple boundary layer solutions smoothly
approaching this scaling is incorrect. Instead, we find a novel terminating sequence
in which the optimal asymptotic scaling is achieved with a three-boundary-layer
solution. In the case of free-slip, we find an asymptotic scaling of Nu<c Ra5/12,
corroborating the conservative estimate obtained in Plasting & Ierley (2005). Here the
infinite hierarchy of multiple-boundary-layer solutions obtains, albeit with anomalous
features not previously encountered. Thus for neither boundary condition does the
optimal solution conform to the well-established models of finite-Prandtl-number
convection (Busse 1969 b), plane Couette flow, and plane or circular Poiseuille flow
(Busse 1970). We reconcile these findings with a suitable continuation from no-slip
to free-slip, discovering that the key distinction – finite versus geometric saturation –
is entirely determined by the singularity, or not, of the initial, single-boundary-layer,
solution. It is proposed that this selection principle applies to all upper bound
problems.

1. Introduction
Significantly, for the upper bound problem of Rayleigh–Bénard convection at

infinite Prandtl number, the momentum equation is employed as a pointwise
constraint. This differs fundamentally from the upper bound problem for arbitrary
Prandtl number, not merely because a lower scaling exponent is achieved by virtue
of the added constraint, but because the physics that underlies the turbulence in this
instance could be claimed to be the simplest, hence severest, test of the success of
upper bound theory; it is in that sense a canonical problem of upper bound theory
as well as the one (for no-slip) long regarded as most rigorously established in a
formal asymptotic sense. It turns out also to be a physics whose variational bound
(based anyway on energy integrals) exposes a remarkable range of novel features, the
description and elucidation of which is here significantly advanced, if not completed.

The first blossoming of upper bound theory (hereafter denoted as MHB, ordered
historically after the three principals Malkus, Howard, and Busse) was inspired by
laboratory experiments on convection (Malkus 1954a , b), in which Malkus noted
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a series of sharp transitions in the slope of the Nu(Ra) relation, coincident with
discrete changes in the spatiotemporal complexity of the observed flow. These led
him in the direction of a theory of turbulence (Malkus 1956), one element of which
was a maximum of the heat flux. Aiming at a clearer mathematical formulation,
Howard (1963) focused exclusively on the associated formal bound and was able to
establish that Nu< c Ra1/2. These ideas were later extended in a remarkable series
of papers by Busse (Busse 1969a , b, 1970), who developed the ‘multi-α’ solution as
a useful extension of Howard’s work and applied this asymptotic expansion to both
convection and shear flow.

The second flowering of upper bound theory (further references to which are
denoted by CDH) stems from a formalism first developed by Hopf (1941), but only
recently exploited to great effect in a seminal series of papers (Doering & Constantin
1992, 1994; Constantin & Doering 1995; Doering & Constantin 1996). These have
formed the foundation upon which many more works have subsequently built. A
critical supplement in tightening such bounds was provided with the introduction of
the ‘balance parameter’ in Nicodemus, Grossmann & Holthaus (1997a), an element
we utilize extensively in this study.

These complementary approaches to the problem of bounding turbulent transport
have previously been shown by Kerswell (1997, 2001) to constitute dual variational
principles for convection at finite Prandtl number, a complementarity now imagined
to hold more generally. A similar result is established in Plasting & Ierley (2005)
(hereafter referred to as Part 1) for the specific limit of infinite Prandtl number: the
maximization of heat flux is a problem with a saddle point, with the MHB formulation
approaching the bound from below and the CDH from above. This defining property
of the latter accounts for much of the renewed interest in upper bounds, since one
can often obtain conservative bounds using simple trial fields, with more elaborate
variational forms serving only further to refine the leading constant.

For the present problem, however, conservative bounds prove unusually difficult
to extract. As commented in Part 1, we found it necessary to go to Ra = 1030−35

to convincingly clinch the value of the exponent from computation. The need for
hyperprecision (up to 96 digits) to avoid fatal roundoff error is the practical reflection
of a cancellation intrinsic to the variational solution, and which cancellation precluded
successful analytic derivation of the result, even by machine-assisted algebra.

Moreover, the Part 1 conservative no-slip bound of Nu<c Ra7/20 – itself an
improvement on the one-parameter test function estimate of Ra2/5 (Otero 2002) –
falls short of the leading-order behaviour of the best possible MHB bound reported
in Chan (1971), namely Nu< 0.152 Ra1/3. While the gap between these estimates does
not present a contradiction, as the MHB and CDH problems treat the same saddle,
the question remains of what essential aspect of the optimal solution, if not a residual
interior temperature gradient, needs be incorporated in the conservative test function
to close the gap.

But perhaps the yet more striking feature of no-slip boundaries is the glaring
discrepancy between the elegant, but technically formidable, result by Chan and
the recent, wholly rigorous, bounds due to Constantin & Doering (1999), Yan
(2004), and Doering, Otto & Reznikoff (2005). While each of these makes use of
more information in the form of harmonic estimates to obtain bounds on chosen
derivatives of the temperature and velocity fields, counter perhaps to intuition all
nonetheless yield higher bounds than Chan; Nu<c Ra1/3(log Ra)2/3, Nu < 1.26 Ra4/11

and Nu< 0.644 Ra1/3(log Ra)1/3 respectively. Further, while the first and last of these
furnish transparently tighter asymptotic bounds than that found by the conservative



Infinite-Prandtl-number convection. Part 2 161

method exploited in Part 1, less apparent is that even the last result does not actually
improve upon Part 1 until Ra > 1.8 × 1086, a value well beyond any that could be
realized in nature.

The case of free-slip (and also mixed boundaries) has received generally less
attention. In his thesis Chan (1970) considered the free-slip problem but he never
published the result. His conclusion was that a 1-α solution would obtain as the
upper bound for all Ra, a suggestion gaining later numerical support based on
computations appearing in Straus (1976a). More recent works include Vitanov (1998)
and Vitanov (2000a , b). For the purpose of this study, the first of these (concerned
exclusively with computation of the 1-α solution) is the most relevant. It was precisely
Chan’s intriguing conjecture that motivated us to explore the free-slip case as an
afterthought. As we shall see, the difficulties attending numerical solution for the free-
slip conservative bound have an intimate relation with the character of the optimal
solution reported here.

1.1. Outline

In § 2 we give a brief recapitulation of the dual problem statements of CDH and MHB
from Part 1. Next we present a representation suitable for solution of the governing
Euler–Lagrange equations. A scalar ‘balance parameter’ plays a key conceptual role
in elucidating the nature of the variational problem but also serves as a useful tool
for diagnosis of numerical results, as we observe in the conclusion to § 3. So far as
we are aware, the latter is novel to this work, hence we illustrate its later application
with care.

Our approach in characterizing the optimal bound is a mixture of numerical and
analytic methods. A complete summary of the numerical findings is presented in
tabular form in § 4, accompanied by brief supplemental remarks. Next we present an
extensive diagnostic treatment of numerical results for no-slip (§ 5) and free-slip (§ 6)
solutions for the Euler–Lagrange equations posed in the CDH formulation.

The great majority of the analytic discussion is confined to the appendices in order
that the main body of the paper be reasonably accessible to the reader. This is not,
however, to say that the appendices in this work are in any way derivative of, or
secondary to, the principal themes: every significant argument advanced in the main
body rests heavily upon original analysis developed in the appendices. Owing to the
striking novelty of the initial bifurcation for free-slip, we have chosen to develop the
more elementary portion of that expansion in § 7 to give the reader at least an initial
exposure to the analysis.

In § 8 we turn to a unification of the free-slip and no-slip results by means of a
mixed boundary condition. This generalization clarifies the singular nature of the
no-slip condition, indicating that the first bifurcation in any upper bound problem
immediately fixes the entire sequence as either an infinite geometric progression or,
as here for no-slip, a finite, terminating, sequence.

Particularly where fractional exponents, and, in the especial case of multi-α
solutions, small differences of fractional exponents are expected, it is self-evident
that numerical limitations on the accessible range of Rayleigh number mean that
computations alone can never be fully definitive in discriminating among nearly
adjacent scalings. Even more so is this the case where, based on Chan’s earlier
analysis for no-slip, one expects the appearance of fractional powers of the logarithm
of Ra. Both for that reason, and with a view to more fully substantiating the novel
finite saturation of lowest wavenumber introduced by free-slip boundary conditions,
Appendices A–C present a comprehensive treatment of the 1-α boundary-layer



162 G. R. Ierley, R. R. Kerswell and S. C. Plasting

problem for both free-slip and no-slip boundary conditions. The treatment of each
gains lucidity by comparison with the other, as there are subtle differences as well
as the more obvious similarities. In Appendix D we continue the development of § 7
by deriving the solution for two wavenumbers. Together, this pair of solutions differs
fundamentally from the conventional model for multi-α solutions.

Lastly, numerical solution of the governing Euler–Lagrange equations requires
extreme boundary layer resolution, for which purpose we use a stable spectral scheme
based in the most general case on the less commonly used Jacobi polynomials. The
governing numerical considerations, along with details on the practical implement-
ation, are briefly sketched in Appendix E. We also note an unexpected bifurcation
encountered with both boundary conditions, one that, in other problems, could greatly
complicate the process of determining a global upper bound.

Readers seeking an abbreviated path through the paper may wish to concentrate
primarily on §§ 2, 4 and 8.

2. Formulation of the upper bound problem
The established model of fluid convection within the Boussinesq approximation is

the Rayleigh–Bénard equations

1

σ

(
∂u
∂t

+ u · ∇u
)

+ ∇p = ∇2u + Ra T ẑ,

∂T

∂t
+ u · ∇T = ∇2T ,

∇ · u = 0.

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (2.1)

The dimensionless parameters σ and Ra are, respectively, the Prandtl number and
the Rayleigh number, with

σ =
ν

κ
, Ra =

αg�T d3

κν
,

the material parameters as defined in Part 1, and the temperature contrast from
bottom to top, �T , is positive. We study the case of infinite Prandtl number (σ = ∞),
a rigorous justification of which limit has recently been given in Wang (2004).

From Part 1, the momentum equation reduces to a dynamical constraint on the
vertical velocity, w, in terms of simply the temperature field, T , and the Rayleigh
number

∇4w + Ra∇2
H
T = 0, (2.2)

where the horizontal Laplacian is ∇2
H

= ∂2
x + ∂2

y and the dynamical fields satisfy either
no-slip

w = wz = 0 at z = 0 and 1, (2.3)

or free-slip boundary conditions

w = wzz = 0 at z = 0 and 1. (2.4)

The associated dimensionless boundary conditions on T are T (0) = 1 and T (1) = 0.
The Nusselt number of the flow is defined as the ratio of the time-averaged total

heat flux to the conductive heat flux between the plates. This can be written either as

Nu = 1 + 〈wT 〉 (2.5)

or, based on the global entropy flux balance,

Nu = ‖∇T ‖2. (2.6)
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Regarding notation, we use (·), 〈·〉, and ‖ · ‖2 as horizontal, volume, and L2 averages
respectively, that is

(·) = lim
Lx,y→∞

1

4LxLy

∫ +Lx

−Lx

dx

∫ +Ly

−Ly

dy(·),

〈·〉 =

∫ 1/2

−1/2

(·) dz, ‖f ‖2 = 〈|f |2〉.

In Part 1, equations (2.5), (2.6), and the momentum constraint (2.2) were used to
formulate two variational problems.

2.1. Recapitulation of two variational statements

For the CDH theory we decompose the temperature field into background and
fluctuation parts

T (x, t) = τ (z) + θ(x, t), (2.7)

where the background field takes on the temperature boundary conditions τ (0) = 1
and τ (1) = 0, and θ satisfies Dirichlet boundary conditions. We further decompose

θ = θ̂ + θ,

thus θ̂ is a zero-mean field.
As derived in Part 1, the CDH theory reduces to minimization of

Nu − 1 �
λ2

4(λ − 1)
(‖τ ′‖2 − 1), (2.8)

subject to the spectral constraint (hereafter denoted SC)

G(w, θ̂ ) = ‖∇θ̂‖2 + λ〈wθ̂τ ′〉 � 0 (2.9)

for all zero-mean fields (w, θ̂ ) that satisfy equation (2.2) and the specific boundary
conditions. We have used the substitution λ = b/(b − 1) to simplify notation.

The derivation following Part 1 (2.14) shows that b > 1 in order that the variational
problem have a solution. This in turn implies that λ > 1. �

The MHB theory proceeds from the assumption of statistical stationarity of
all horizontal averages. In contrast to the CDH formulation, we decompose the
temperature field into mean and zero-mean components

T (x, t) = T (z) + θ̂ (x, t).

For arbitrary Prandtl number the homogeneous functional to be maximized is

F =
〈wθ̂〉2 − 〈wθ̂〉‖∇θ̂‖2

‖wθ̂ − 〈wθ̂〉‖2
, (2.10)

subject to the power constraint

‖∇θ̂‖2 + ‖wθ̂ − 〈wθ̂〉‖2 = 〈wθ̂〉, (2.11)

and appropriate boundary conditions. For the particular case of σ = ∞, the
optimization of F is further subject to the momentum constraint (2.2) and provides an
upper bound on the Nusselt number, Nu − 1 � supF . The Euler–Lagrange equations
that result are stated in Part 1. �
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In § 3 we derive the optimal equations for the CDH formulation. These are the
basis for the numerical solutions that follow. The corresponding equations for the
MHB approach are used for the development of our analytical results for both no-slip
and free-slip boundary conditions. Remember that, owing to the proof given in Part
1 of the equivalence of these formulations, the bounds that result are independent
of which set of equations is used. The choice is a matter of convenience. The CDH
approach enjoys the advantage, for numerical purposes, of unambiguously signalling
the emergence of multi-α structure via the spectral constraint. By contrast, when the
purpose is to develop an asymptotic expansion of a particular solution branch, the
spectral constraint is irrelevant, and the MHB formulation particularly convenient.

3. Solution technique
Following the CDH method, we now present the programme for solving the optimal

problem. The functional to be optimized is

N̆u − 1 =
λ2

4(λ − 1)
(‖τ ′‖2 − 1) − G(w, θ̂ ) −

〈
q(x)

(
∇4w + Ra∇2

H
θ̂
)〉

, (3.1)

where q(x) is a Lagrange multiplier enforcing the momentum constraint and satisfying
‘natural’ boundary conditions (cf. Courant & Hilbert 1953), which turn out to be
those of w.

3.1. Euler–Lagrange equations

As noted in Part 1, there is no preferred horizontal direction in the optimal solution
since the Euler–Lagrange equations have horizontal derivatives of even order only.
Hence without loss of generality we can represent a single-mode solution in the form

w = w(z) cos αx, q = q(z) cos αx, θ̂ = θ̂ (z) cos αx.

After suitable manipulation, the w, θ̂ and q variations are found to be

2(D2 − α2)θ̂ − λwτ ′ + Ra α2q = 0, (3.2)

(D2 − α2)2q + λθ̂ τ ′ = 0, (3.3)

(D2 − α2)2w − Ra α2θ̂ = 0. (3.4)

This set is supplemented by the derivative of (3.1) with respect to α,

〈θ̂2〉 − 2〈q(D2 − α2)w〉 − Ra〈qθ̂〉 = 0. (3.5)

The equation for the optimal background field is

λ(τ ′ + 1) = wθ̂ − 〈wθ̂〉, (3.6)

while the optimal balance parameter, λ, satisfies

λ = 2 − 〈(Dθ̂)2 + (αθ̂ )2〉
〈wθ̂〉

. (3.7)

3.2. Spectral constraint

In the CDH formulation the competitor fields are those background fields satisfying
the spectral constraint (2.9). We use the terminology that a background field is ‘SC-
stable’ if it satisfies the spectral constraint and ‘SC-neutral’ for the particular case
that it marginally satisfies the constraint, i.e. lies on the boundary of the admissible
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set. By embedding in the appropriate (L2) infinite-dimensional generalization of a
Euclidean space, it can be shown that the geometry of the spectral constraint implies
that there is a unique SC-neutral solution to the Euler–Lagrange equations.

A solution to the CDH Euler–Lagrange equations constitutes an upper bound on
the heat transport if and only if the background field is SC-stable. At the point
where a solution branch loses SC-stability an additional wavenumber enters into
the solution, and a non-smooth branching in the optimal solution curve occurs. (In
principle, more than one wavenumber can enter the solution simultaneously but this
was never found to happen.) The spectral constraint becomes

G = 〈(Dθ̂ )2 + (αθ̂ )2〉 + λ〈wθ̂τ ′〉 � 0, (3.8)

which must be satisfied for each single-mode pair (w, θ̂ ) that satisfies equation (3.4)
and the governing boundary conditions.

This condition can be posed as an eigenvalue problem: the background field τ

and associated balance parameter λ are SC-stable if the eigenvalues of the following
system are non-positive (µ � 0) for all wavenumbers α:

2(D2 − α2)θ̂ − λwτ ′ + Ra α2q =µθ̂,

(D2 − α2)2q + λθ̂ τ ′ =0,

(D2 − α2)2w − Ra α2θ̂ =0,

⎫⎪⎬⎪⎭ (3.9)

for w, q , and θ̂ eigenfunctions of z, which satisfy the specific boundary conditions.
Comparison with the optimal equations (3.2)–(3.4) shows that the optimal background
field must be SC-neutral. In this paper the spectral constraint is checked carefully
using standard numerical eigenvalue software. An approach to the optimal bound
would seem unavoidably to require such an element of numerical verification and to
that degree must always fall short of constituting a mathematical proof.

3.3. Multi-α solutions

The single-mode solution branch begins at the energy stability point Rac, at which

the conduction state (w = θ̂ = 0 and τ = 1 − z for all z ∈ [0, 1]) is unstable to
single-wavenumber rolls. The critical Rayleigh number and wavenumber for free-slip
boundary conditions are, respectively,

Rac =
27π4

4
≈ 657, αc =

π

2
, (3.10)

and for no-slip boundary conditions

Rac = 1707.76177710, αc = 3.11632355. (3.11)

When λ = 1 the spectral constraint makes contact with the energy stability problem.
Therefore, the optimal solution bifurcates from the conduction state onto the single-
mode branch at Ra = Rac. Continuation in Ra can be made along the single-mode
branch while SC-neutrality is preserved. As is generally observed with these bounding
problems, the single-mode solution gives way to a two-mode solution, which later
(in Ra) loses SC-stability to a three-mode solution, and so on. We denote by Nj ,
for j = 1, 2, . . . , the value of the functional for a j -mode solution of the optimal
equations. When Nj = Nj+1 the j -mode solution loses SC-stability to the (j +1)-mode
solution branch. The optimal upper bound on the Nusselt number will be denoted by

Nu = max
j

Nj , (3.12)
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where the maximizing subscript is invariably a monotone increasing function
of Ra.

Therefore, at any particular Ra, the maximum will be achieved by the M-mode
solution branch and the generic nature of the optimal fields is

θ̂ =

M∑
m=1

θ̂ (m)(z) cos αmx, w =

M∑
m=1

w(m)(z) cos αmx, q =

M∑
m=1

q (m)(z) cos αmx, (3.13)

where each subfield (αm, w(m), q (m), θ̂ (m)) must individually satisfy the four equations
(3.2)–(3.5), while collectively they determine the background field and optimal balance
parameter

λ(τ ′ + 1) =

M∑
m=1

(
w(m)θ̂ (m) −

〈
w(m)θ̂ (m)

〉)
, (3.14)

λ = 2 −

M∑
m=1

〈(
Dθ̂ (m)

)2
+
(
αmθ̂ (m)

)2〉
M∑

m=1

〈
w(m)θ̂ (m)

〉 . (3.15)

3.4. Balance parameters and scaling laws

In common with nearly all problems governed by a large or small parameter, here
too we seek, from numerical data computed over a finite range in Ra, to estimate
power-law exponents that hold asymptotically. While it often suffices for that purpose
to make a log–log plot of the quantity in question, we are seeking slight differences
in successive exponents. In addition, while local estimates of the exponent do give
plausible graphical evidence of tending to a limit, in only a few instances can the
computations be carried sufficiently far in Ra to make that limit self-evident. In all
remaining cases, a reliable estimate of the limit requires that we model one, or more,
of the transients as well, each governed by its own characteristic exponent(s). We
develop this idea through a formal expansion of the intuitive power-law estimate
based on the logarithmic derivative but also, and less obviously, by appeal to the
balance parameter defined by (3.15). We expand on the latter’s relation to the upper
bound on Nu, deriving a specific relation for three model forms chosen to reflect the
range of asymptotic behaviours reported in succeeding sections. From this relation
follows a second, more stable, independent estimator for the desired exponent. (For
added background on the balance parameter and related considerations in the case
of plane Couette flow see Plasting 2004.)

Recall the Lagrangian, here slightly rewritten as

N̆u − 1 =
λ2

4(λ − 1)
(‖τ ′‖2 − 1) − G(w, θ̂ ), (3.16)

where G(w, θ̂ ) = ‖∇θ̂‖2 + λ〈wθ̂τ ′〉. The spectral constraint G(w, θ̂ ) � 0 must be

fulfilled by all single-mode fields (w, θ̂ ) satisfying both the pointwise constraint

∇4w + Ra∇2
H
θ̂ = 0 and appropriate boundary conditions.

If we let w → Ra1/2w and θ → Ra−1/2θ then the parametric dependence on Ra is
confined to the spectral constraint

G̃ = ‖∇θ̂‖2 + R〈wθ̂τ ′〉 � 0 for all suitable (w, θ̂ ), (3.17)
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where we define an auxiliary variable R = λRa. For a candidate function τ there
exists a critical point R = Rc below which the spectral constraint is satisfied, while for
R > Rc the spectral constraint does not hold. This critical point implicitly defines a
family of SC-neutral functions, τ (R), (dropping the subscript) that marginally satisfy
the spectral constraint, and without explicit reference to the balance parameter.

Restricting ourselves to that family, the bound reduces to subsidiary scalar
optimization of the function

D̃ =
λ2

4(λ − 1)
(‖τ ′(R)‖2 − 1) (3.18)

over λ noting that, if we fix the external parameter Ra, then R has to be regarded

as a function of λ and in particular dR/dλ = R/λ. Setting dD̃/dλ = 0 provides the
optimal value of λ. In application to a specific assumption of the asymptotic form for
‖τ ′(R)‖2, the result of this optimization, substituted back into (3.18), gives the desired
bound on Nu − 1. In all cases, the optimal λ must lie in the interval [1, ∞).

For the optimal profiles addressed here, the balance parameter computed from

the explicit form (3.7) must of course satisfy the relation dD̃/dλ = 0. While these
considerations apply equally to functions like the two-parameter piecewise linear
profiles considered in Part 1, in that paper, because the scaling exponent is independent
of λ, for computational simplicity we set λ = 2.

The first paper to exploit a balance parameter was Nicodemus et al. (1997a), on
bounds for the friction factor in plane Couette flow, where the same form arises

for D̃. Where previously λ had simply been set equal to 2 (giving a prefactor,
as in (3.18), of unity), the authors showed that, for the simplest one-parameter test
functions, the optimal choice of balance parameter is λ = 3/2 for Re → ∞. Nicodemus
et al. (1997b) calculated a tighter bound by using two-parameter, piecewise-quadratic,
profiles with a numerical treatment of the spectral constraint but found the same
asymptotic limit for λ. Lastly Plasting & Kerswell (2003) also recover the same limit
of λ in a numerical study that, as here, exhausts the bounding potential over all
one-dimensional background fields. In fact, this limit for λ holds for any family of
test functions for plane Couette flow that captures the correct power of Re.

The reason that the optimal λ tends to the same value for all test functions that
achieve the same scaling exponent is more easily seen if we consider, not the balance
parameter itself, but the exponent estimate that derives from it, namely

µ1 =
2 − λ

λ − 1
(3.19)

(cf. Plasting 2004). As noted in the introduction to this section, a second quantity,
more commonly computed for the same purpose, is

µ2 =
d(log Nu)

d(log Ra)
.

The latter is typically noisier, as it requires numerical differentiation, whereas the
former is computed from integrals of the solution. As detailed below, each of these
has a natural expansion in a small parameter, Ra−µ (possibly augmented by factors
of log Ra), for some µ > 0. Generally each is a rational function of its argument
but, for sufficiently large Ra, that rational function can itself be expanded in a series.
Differences in the resulting series for µ1 and µ2 can aid in eliciting the correct
asymptotic form for Nu; hence µ2, though possibly more troublesome to compute, is
a helpful supplement.
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The implicit algebra that defines λ and µ1,2 above can be made explicit by use
of suitable asymptotic expansions of all quantities, given a particular form for Nu.
Looking first at a comparatively simple expansion for Nu (developed to this order for
the free-slip 1-α solution in Appendix C.1),†

Nu ∼ c1Ra1/3 + c2 + (c3 log Ra + c4)Ra−1/3, (3.20)

this exercise generates the following:‡

λ ∼ 7

4
+

3(c2 − 1)

16c1Ra1/3
+

3c3

8c1

log Ra

Ra2/3
−

3
(
3c2

2 − 6c2 + 3 + 12c3c1 − 8c4c1

)
64c2

1Ra2/3
, (3.21)

µ1 ∼ 1

3
− c2 − 1

3c1 Ra1/3
− 2c3

3c1

log Ra

Ra2/3
+

(
(c2 − 1)2

3c2
1

+
c3

c1

− 2c4

3c1

)
Ra−2/3, (3.22)

µ2 ∼ 1

3
− c2

3c1 Ra1/3
− 2c3

3c1

log Ra

Ra2/3
+

(
c2

2

3c2
1

+
c3

c1

− 2c4

3c1

)
Ra−2/3, (3.23)

from which one sees that the relation of µ1 to µ2 results from the transformation of
c2 to c2 − 1, that is to say,

µ1 ∼ d(log(Nu − 1))

d(log Ra)
. (3.24)

(In cases other than an algebraic controlling factor, both this relation and (3.19) must
be modified appropriately.) In figure 1, we plot log(µ1 −µ2) for a case to be discussed
later and compare it with the logarithm of the first non-vanishing term predicted
by the difference between (3.22) and (3.23). As the needed constant c1 is known
analytically, the comparison is free of arbitrary parameters and the agreement is thus
seen to confirm the expansions above, the assumption that (3.20) is the appropriate
form for Nu in the case considered, and the accompanying theory that provides the
requisite value of c1.

Similarly for

Nu ∼ c1Ra2/5 + c2Ra1/5 + c3, (3.25)

the elementary form of which for the 2-α free-slip solution follows from the analysis
in Appendix D.2, there results

λ ∼ 12

7
+

5

49

c2

c1 Ra1/5
+

10

343

7 (c3 − 1) c1 − 3 c2
2

Ra2/5c2
1

, (3.26)

µ1 ∼ 2

5
− c2

5c1Ra1/5
+

(
c2

2

5c2
1

− 2(c3 − 1)

5c1

)
1

Ra2/5
, (3.27)

µ2 ∼ 2

5
− c2

5c1Ra1/5
+

(
c2

2

5c2
1

− 2 c3

5 c1

)
1

Ra2/5
, (3.28)

† Hereafter, although we are speaking of bounds on heat flux, we use an asymptotic symbol in
relations such as (3.20). It is to be understood that the form on the right is, in each case, a bound
on (strictly) Nu − 1. The notation is intended to emphasise the asymptotic nature of these estimates.
Little confusion should result.

‡ The expansion for λ is somewhat tedious to derive directly. One introduces an expansion for
λ and also one for ‖τ ′(R)‖2 in (3.18) substantially of the form assumed for Nu, but with unknown
coefficients. The derivative condition couples the two expansions, and enforcing those relations in
the subsequent expansion of (3.18), when equated to Nu − 1, closes the set. It proves easier, based
on the general result (3.24), to find µ1 given µ2, and solve for λ from (3.19).
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Figure 1. This example, showing the expected difference between two estimates of the
leading-order algebraic exponent, is taken from § 6, on free-slip computations.

and c3, the constant term in the asymptotic form for Nu, plays the same role as above.
Finally, for the general relation

Nu ∼ c1 Raµ(log Ra)ν + c2, (3.29)

the associated expansions take the form

λ ∼ 2 + µ

1 + µ
− ν

(1 + µ)2 log Ra
+

µ(c2 − 1)

(1 + µ)2Raµ(log Ra)ν
, (3.30)

µ1 ∼ µ +
ν

log Ra
− µ(c2 − 1)

c1 Raµ(log Ra)ν
, (3.31)

µ2 ∼ µ +
ν

log Ra
− µc2

c1 Raµ(log Ra)ν
. (3.32)

Although one cannot prove ν � 0 for every conceivable upper bound problem,
this appears always to be the case. Consequently, a log term in the leading-order
dependence means that both µ1 and µ2 will approach their common limit from
above. By contrast, the constant term in the algebraic forms for Nu, e.g. (3.20), is not
expected to exhibit a sign preference, hence the limit may be approached from either
side, and even for µ1 and µ2 to approach the limit one from above and the other
from below in the case of (3.20) (and its generalization) for 0<c2 < 1.

The results for the balance parameter are asymptotic with the normal limitations
that implies for finite Ra. In particular, the balance parameter λ must pass smoothly
to λ = 1 at the energy stability point, Ra = Rac, a feature unlikely to be captured by
these expansions.

In closing, we comment that, for more complex bounding problems, the spectral
constraint cannot generally be parameterized by a single variable (here R = λRa),
although there may for particular problems be a simple two- or three-dimensional
equivalent factorization into constraint space and optimizing space.
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Free-slip No-slip

1-α Nu ∼ 0.32498941162098 Ra1/3 Nu ∼ 0.14816941588087 Ra3/10(log Ra)1/5

α1 ∼ 5.5377856128012329 + c1 Ra−1/3 α1 ∼ (Ra/13)1/4

2-α Nu ∼ 0.1017Ra2/5 Nu ∼ 0.128693Ra0.33175 (log Ra)0.0325

α2,1 ∼ 1.9662 α2,1 ∼ c Ra1/4

α2,2 ∼ 0.6519Ra1/5 α2,2 ∼ c Ra0.33175 (log Ra)0.0325

3-α Nu ∼ 0.068197 Ra31/75 Nu ∼ 0.1380Ra1/3

α3,1 ∼ c α3,k ∼ ckRa1/3

α3,3 ∼ c3Ra6/25 ck = {0.002925, 0.02850, 0.1328}

N-α Nu ∼ cNRa5/12(1−5−N ) Nu ∼ cNRa1/3

αN,1 ∼ c αN,N ∼ cRa1/4(1−51−N ) αN,k ∼ ckRa1/3 ∀k

Table 1. Compilation of all numerical results from solution of the CDH form of the
Euler–Lagrange equations.

4. An overview
Asymptotic analysis of multi-α solutions rests in the first instance on a firm

grounding for the solution with a single horizontal mode. And, although the 1-α
branch remains a valid upper bounding solution only while the spectral constraint
is satisfied, we compute both free-slip and no-slip solutions well beyond this point.
We do the same for all successive bifurcating branches as well, although numerical
limitations generally prevent us from following each of these as far as one would like.

If limited only to the segments of the α branches prior to bifurcation, the available
range of data is simply so far from asymptotic that extrapolation for the leading-
order behaviour is pointless. Even using the unrestricted branch, a persuasive case
requires that one fit the transient terms as well. When, as for the 1-α solutions, there
is a complete analytic theory at hand, those transients are easily determined. In those
cases where analytic guidance is lacking, arguments have inevitably to be in the nature
of a ‘bootstrap’.

Table 1 gives a summary overview of the results established in this work. We
support Chan’s 1-α solution but disagree with his scalings for all other branches.
Confirmation of the 1-α result rests partly on numerical findings and partly on
extensive supplemental analysis presented in Appendices B and C. Conclusions
regarding the higher branches for the no-slip problem rest on numerical evidence
alone. We agree with a part of Vitanov’s previous work (Vitanov 1998) on the 1-α
solution for the free-slip problem but find significant differences. A complete analysis
of this case is presented, with the leading-order balance in the main body of the
paper, and additional details on matching given in Appendices B and C, the latter
points paralleling similar considerations for no-slip. Analysis and numerical results
are in complete accord for this case. We present the leading-order analysis, which
consists of the determination of a certain set of indicial exponents, for a novel balance
arising from the 2-α branch for free-slip. All of these features are supported by the
numerical evidence. A supplemental analytic discussion on closing the set of equations
in the midlayers is given in Appendix D. A portion of this analysis is fairly accessible
to comparison with, and shown to be supported by, numerical results. Finally we
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propose that free-slip higher branches generate a geometric series of relations for Nu
that approaches a limit of Ra5/12.

Where needed for clarity, we shall use a subscript to denote a solution with k

wavenumbers, e.g. λk for the associated balance parameter. A second subscript is used
to enumerate the boundary layers; hence the wavenumber, for example, is indicated
by αk,j where 1 � j � k and j = 1 corresponds to the smallest wavenumber. (We
omit the second subscript in the case that k = 1.)

5. No-slip numerical results
5.1. 1-α results

All the arguments in Appendices A and B support the leading-order 1-α result for
Nu, given in equation (118a) of Chan, that

NuC ∼
(

6

I

)6/5
Ra3/10(log Ra)1/5

(13)13/10(20)1/5
= 0.14816941588087Ra3/10(log Ra)1/5 (5.1)

as Ra → ∞. (The integral I is defined and evaluated in Appendix A.) The implicit
coupled relations that arise on maximizing F generate higher-order terms than are
stated by Chan. While these added terms are incomplete in that a full accounting of
higher coefficients requires subsidiary expansions not completed in this paper, it is
nonetheless helpful here to note the general form for Nu that emerges, i.e.

Nu ∼
(

6

I

)6/5
Ra3/10(log Ra)1/5

(13)13/10(20)1/5

[
1 +

1

5

4 log log Ra − 4 log(10I/3) − log 13

log Ra
+ . . .

]
.

(5.2)

Thus the dependence on log log Ra/ log Ra, for example, will persist in the computed
results, but with additions to the above coefficient of 4/5. The fundamental origin of
these terms can be traced to (B 4), the singular solution for w in the intermediate
layer.

On this ordering of terms, purely algebraic corrections remain subdominant, and
hence undetermined, but we can allow for such a correction in an empirical fit. Our
numerical results carried past Ra = 1017 are consistent with

Nu ∼
(

6

I

)6/5
Ra3/10(log Ra)1/5

(13)13/10(20)1/5

[
1 +

0.1391 log log Ra − 2.6575

log Ra
+

1.3054

Ra3/10

]
. (5.3)

The magnitude of the apparent corrections seems unexceptionable, e.g. 4/5 above
now becomes 0.1377. Subsidiary issues, such as appropriate fitting algorithms for
coefficients of asymptotic expansions in the presence of systematic errors in the
data, and intrinsic ill-conditioning of higher-order fits for logarithmic expansions,
notwithstanding, the coincidence of curves in figure 2, where we have plotted Nu/NuC

against the fitted value of the same ratio, gives the appearance of a correct asymptotic
characterization.† As the only coefficients fitted are those stated in decimal form, a
fortiori every component of the leading-order prediction (5.1) is verified. Given Chan’s
prediction of 3/10 for the algebraic dependence of Nu on Ra, there is a further
consequence: the interior slope of T remains −1/13 as Ra → ∞, which implies that
the slope of τ is positive in the interior, τ ′ = 1/23.

† The slight gap appearing for Ra > 1016 indicates a growing loss of precision. For an expansion

in polynomials up to degree 1800, the spectral fall-off for θ̂ is only about 0.007.
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Figure 2. The Nusselt number, Nu, divided by the leading-order result, NuC , and an
empirical asymptotic fit.
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Figure 3. Direct confirmation of Chan’s 1-α prediction.

A second test of Chan’s analysis is the wavenumber prediction

α1 ∼
(

Ra

13

)1/4

as Ra → ∞ (5.4)

(equation (54) in Chan 1971). This is readily confirmed as above by using a fit with
suitable logarithmic corrections but, to make the case more sparely without recourse
to freely fitted terms, we compare the computed ratio Nu/α1 to the leading-order
prediction derived from Chan, namely

Nu/α1 ∼ 0.28134837224762Ra1/20 (log Ra)1/5. (5.5)

The rapid confluence of the curves in figure 3, in spite of the weak dependence
predicted, is a convincing demonstration of the validity of Chan’s expansion. That
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Figure 4. (a) The no-slip Nusselt bound scaled by Ra1/3. Here and henceforth circles indicate
bifurcation from k to k + 1 wavenumber solutions. (b) Bifurcation of the no-slip horizontal
wavenumbers αk,j for the optimal solution.

(5.5), without any empirically fitted corrections, so closely matches the computed
result has to be attributed to a serendipitous degree of cancellation between numerator
and denominator since the explicit estimates of the numerator available from (5.3)
show that asymptotic correction terms of order log log Ra/ log Ra remain significant
over the accessible range of computation. For comparison, a plot of the asymptotic
expansion for the balance parameter by (3.30) with µ = 3/10 and ν = 1/5 shows only
crude agreement with direct numerical computation, precisely owing to the need of
such corrections.

There are several delicate points raised in Chan’s expansion of the leading-order
solution. The full series (B 4), of which only the first term is given by Stewartson
(1966), is asymptotically similar to a generalized hypergeometric function, (B 10).
The series contains only one free parameter, which enters at second order, and yet
matching to the interior would normally dictate that there be two parameters. Even
a determination of that single parameter is tricky, with the result, shown in figure
23, turning on a comparison of the optimal asymptotic truncation of (B 4) with a
numerical solution of the integral equation (B 12). Analysis of matching of the outer
limit of the wall layer in (C 28) and the inner limit of the intermediate layer in (B 5)
shows both the need for a subsidiary expansion of the latter and that care must be
taken in consistently defining the amplitude of the wall layer as given in (C 29) (with
the consequences apparent in (5.2)). All of these points are developed in detail in
the appendices in order fully to support the case that the 1-α solution is correct. By
contrast, we see in § 5.2 that the elaborate multi-α scenario envisioned by Chan is
wholly incorrect. The failure of his arguments can be initially understood by reference
to a crucial modification of the intermediate layer solution.

5.2. Multi-α results

The optimal solution was followed up to, and including, four wavenumbers. The
bifurcation to five wavenumbers was fixed at Ra approximately equal to 9.398 × 109.
In figure 4, approach to an asymptotic limit of Ra1/3 is reasonably evident. We estimate
a limiting prefactor of 0.139, which lies about 9% below Chan’s asymptotic prediction
of 0.152Ra1/3.† Circles represent bifurcations from mode j to j + 1, the points at
which SC-neutrality switches to solutions with a greater number of nested boundary

† The value quoted comes directly from Chan (1971, equation (119)) but, on substitution of his
stated numerical values for I and β (we have confirmed both) into his preceding analytic form,
(95), we compute a prefactor 0.163345, with our result then a reduction of 15% instead.
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Figure 5. The balance parameter λ3 with a two-term prediction for the no-slip 3-α solution.

layers. Bifurcations in the horizontal wavenumbers of the optimal solution are shown
in figure 4(b). Chan estimated that the first bifurcation occurs at Ra = 1010 and that
the number of wavenumbers included in the optimal solution grows as O(log log Ra).
Straus (1976b) gave apparent support for this, reporting that no bifurcation is seen for
Ra � 106. However, we find that the first bifurcation takes place at Ra = 2.4968×105.

For the 3-α branch, λ tends far more quickly to its limit than does λ for the
1-α branch. On the revised assumption that Nu takes the form (3.20), the balance
parameter has the asymptotic expansion given in (3.21). As the data for Nu do not
permit an accurate determination of c2 or higher constants, we appeal to (3.21) to
justify the use of an empirical one-parameter fit, namely

λ3 = 7/4 + c̃1Ra−1/3. (5.6)

The result, shown in figure 5 with c̃1 = −1.3869, patently confirms that (5.6) is the
appropriate form and thus λ3 tends to the limit stated. The 3-α solution immediately
attains the saturated dependence, Ra1/3; there is no leading-order logarithmic con-
tribution at all.

The addition of figure 6 makes the point clear beyond doubt. Five curves are
plotted – α3,k (k = 1, 2, 3), Nu, and Ra1/3 – with a free vertical offset of four of the
five in order to bring the set into transparent coincidence. (Nu is held fixed.) It should
be clear at once what this means: there is no asymptotic scale separation of successive
wavenumbers. We have instead a scenario somewhat reminiscent of the analytical
scheme originally proposed by Busse for shear flow (where successive scales differed by
a factor of four, albeit in that case only asymptotically and, strictly speaking, formal
scale separation was still obtained between successive layers). Here α3,k = ckRa1/3

with the values of the ck given by

c1 = 0.1328673, c2 = 0.0285047, c3 = 0.0029252.

The coupled equations for this case follow immediately but analysis of this set is
obviously hampered by the lack of scale separation. Rather, one can utilize only the
numerical separation of the ck .
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Figure 6. A superposition of the α3,k and Nu demonstrating that the 3-α solution attains the

limiting form of Ra1/3 and with no scale separation of the wavenumbers.

The reader will naturally wonder at this point about the 2-α branch. This turns
out to be a delicate transitional solution; neither of the precise algebraic–logarithmic
form proposed by Chan, nor quite of the saturated form found above. While we have
not pursued the details of the 3-α expansion, in a broad sense there is not much more
for such an exploration to reveal; the contours of the solution are perfectly clear.
This is far from the case for the 2-α solution, where we do not see the means yet to
advance beyond an empirical determination of the scaling.

The single most striking and reliably established characteristic of the 2-α solution
is that, in common with the pattern of the 3- and 4-α solutions, and in sharp contrast
with Chan’s prediction, the ratio Nu/α2,2 tends rapidly to a constant, slightly larger
than unity. This immediately and decisively undermines the envisioned nesting of
sublayers as given in Chan but it is considerably more challenging to determine the
leading-order dependence of Nu itself than simply to observe its relation to α2,2.

The most useful diagnostics are the numerical estimates for the controlling factor,
µ1 and µ2. If µ1 or µ2 alone is plotted, a determination of µ relies on judging the
horizontal asymptote. In the case of an elementary exponent, such as 1/3, this presents
no difficulty. But when, as here, the leading exponent need not take an elementary
value, one requires a fitting algorithm. If Nu is assumed to vary as c1Raµ + c2, then
µ1 = µ + cRa−µ while taking Nu ∼ c1Raµ + c2Raν necessitates a three-parameter
fit, µ1 = µ + cRaν−µ. In such an ambiguous circumstance it is more useful to plot
log |µ1 − µ2|, where the desired exponent for either form of Nu is simply read off as
the slope or, to be sure, the limiting value of that slope.

A plot of log |µ1 − µ2| for the 2-α solution does seem to show algebraic decay
with an apparent value of µ = 0.3387. While limitations in the accuracy of the data
(primarily µ2) leave an unacceptably large uncertainty in the estimate of µ – confined
by the 3-α results, µ cannot in any case exceed 1/3 – it is crudely in the range
expected. But unlike the case of the balance parameter in (5.6), the individual curves
for µ1 and µ2 tend to a limit much more slowly than Ra−µ and they approach that
limit from above. Each of µ1,2, that is, has a more slowly decaying transient and
the transients are identical in their dependence on Ra (at least to O(1)). While this
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Figure 7. Evidence for the asymptotic scale of Nu on the 2-α branch. (a) A self-consistent
fit of µ1 in order to determine the parameters µ and ν. (b) Computed (solid) and predicted
(dashed) values for µ1 and µ2.

qualitative description certainly implies a purely algebraic asymptotic form, such as
(3.25), conditioned principally by the form of the 1-α scaling, it is natural to consider
(3.29) and, in the end, it provides the more persuasive fit. This may seem too general a
form as a basis for stable estimates, as it is frequently observed that fitting coefficients
and exponents simultaneously is a numerical procedure to be avoided, but various
cross-checks are helpful in this regard.

The values for µ and ν must be such that

µ + ν(log Ra)−1, (5.7)

when subtracted from µ1 and µ2, leaves a transient which itself decays with the
seeming algebraic decay noted above. For (3.29), that residual transient is not Ra−µ

but rather Ra−µ (log Ra)−ν . However, as the difference plot of log |µ1 − µ2| was
observed to be nearly a straight line, we can anticipate that ν must be small in
magnitude.

This determination of µ and ν is more stably computed from µ1, particularly the
latter parameter. The results of this analysis are shown in figure 7, with panel (a)
vindicating the choice of µ and ν. (The logarithmic correction term is included in
the dashed line though its influence is negligible over the range plotted.) Figure 7(b)
shows two dashed lines, given by (3.31) and (3.32), which agree well with the computed
values. Equation (3.31) relies separately upon the values for c1 and c2 appearing in
(3.29). While the first of these can be determined from fitting Nu, the data do not give
a reliable estimate for c2, so the latter was chosen to fit µ1 and µ2 simultaneously
(using c2 = 0.037). Substituted into (3.29) we thus have

Nu ∼ 0.128693Ra0.33175 (log Ra)0.0325 + 0.037.

Trying to anticipate the exact exponents is a difficult enterprise in numerology given
the absence of an accompanying derivation, and not overlooking that the final data
points are perceptibly noisy; hence these values must be regarded as provisional, but
the data do not permit significant departure from the values stated if all the tests for
consistency are to hold. Perturbing the algebraic power by ±0.00005 or the logarithmic
power by ±0.0005 gives noticeably worse agreement in replotting figure 7(a). Key to
the accuracy of this determination as well is that, and again in contrast with Chan’s
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Figure 8. (a) Superposition of w (solid) from a 1-α solution and w2,1 (dashed) from a 2-α
solution at a common reference value of α. (b) The same superposition, but the second
derivative in each case, with w′′

3,1 (dash–dot) from the 3-α solution of largest available Ra
shown for comparison.

proposed elaboration to a multi-α solution, log–log corrections here do not appear
to enter at the same order as indicated in Appendix B for the 1-α solution.

A complementary approach to the determination of scalings is the superposition of
curves representing w, θ , and their derivatives at a range of values of Ra. When the
exponents sought are simple rational numbers, this is a useful and elementary exercise.
Variations in the overlaid curves are produced not only by explicit adjustments of µ

and ν in the process of fitting but also by variation in higher-order corrections over
the finite range of Ra sampled. In seeking an exponent that evidently is exceedingly
close to 1/3 these two effects are not easily distinguished, if at all. So while plots of
this nature may help to confirm the values identified above, they are not useful to
find the values a priori.

Instead it is more instructive to look at w2,1, here selected at Ra = 6.763×1013 with
α2,1 = 540.943, and compare it to w from a 1-α solution with α1 having the same
value, which occurs for Ra = 1.618 × 1012. Plotted as a function of ξ = αz using the
common value of α, one might expect the intermediate layer solutions to coincide
as they satisfy the same equation and certainly the same boundary conditions for
ξ → ∞. While in figure 8(a) w and w2,1 are reasonably similar, figure 8(b), showing
the second derivative of each, exhibits a first-order change in the character of the
match coming from the sublayer. Where w′′ shows a slope monotonically increasing
towards the origin, reflecting the underlying

√
log(1/ξ ) singularity in (B 4), w′′

2,1 shows
a clear change in the character of that match at approximately the point where the
two curves cross. This effect is more transparent with the third curve, which shows
w′′

3,1. Note, however, that the 3-α solution is for α3,1 = 44.109. Reaching the desired

value of 540.943 would require an increase in Ra by about 103 beyond the highest
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point computed. In lieu of this, we have arbitrarily rescaled w′′
3,1 in the plot so that

its amplitude matches w′′
2,1.

The structure of Chan’s 1-α solution – specifically the appearance of log–log terms –
is singularly sensitive to the intermediate layer conditions imposed in the limit of
ξ → 0. With the modification of the boundary conditions those terms immediately
disappear and, while a (weak) logarithmic dependence persists in the 2-α bound for
Nu, the rapid decay of correction terms, as detailed in the discussion above for µ1 and
µ2, allows a robust characterization of this solution branch in advance of the needed
analytical development. Free-slip boundary conditions will prove less numerically
obliging.

Finally, computations at 4-α carried to Ra = 1011 show Nu, α4,4 and α4,3 all
apparently consistent with a limiting dependence of Ra1/3. We anticipate that the
emergence of this scaling will become apparent for α4,1 and α4,2 as well, once Ra is
sufficiently far above the bifurcation at Ra = 2.09 × 108. At Ra = 1012 for example,
α4,1 is only 3.2 after rising from a minimum of 2.96 at Ra = 5 × 109. (By comparison
we were able to carry the 3-α solution from its initial bifurcation at Ra = 6.74×106 to
Ra = 1.14 × 1013.) A plot of log |µ1 − µ2| gives persuasive evidence that µ = 1/3 but,
unlike the case of the balance parameter for the 3-α no-slip solution, there appears to
be an intervening algebraic transient ahead of a constant term in the asymptotic form
for Nu, suggesting at least some possible distinctions between 3- and 4-α solutions.
So the behaviour of the lesser wavenumbers may not be as simple as we have
proposed and the failure of scale separation perhaps confined to fewer wavenumbers.
Computation extended to Ra ≈ 1016 should resolve this point decisively.

We have not computed 5-α solutions and beyond but it seems that, from 3-α
onward, all branches will asymptote to Ra1/3, with only the prefactor affected,
and that some absence of scale separation is characteristic of the saturated bound.
Our estimates of the prefactor for Nu are 0.138006795 and 0.13835 for three- and
four-wavenumber solutions respectively. The inconsequential change suggests that
computations on higher branches serve little practical purpose.

In conclusion, it is a curious feature that the dual nature of this variational problem
is reflected as well in the character of the fields that saturate the bound. It has long
been thought that the MHB approach yielded the correct asymptotic bound but
inevitably only after undergoing an infinite bifurcation sequence of nesting boundary
layers. The progression found here is 1, 2, ∞. Subsequent bifurcations simply modify
the leading constant (approaching the limit from below of course).

Coming from the other direction, a number of successes in application of the CDH
method has encouraged the view that simple, one-parameter, test fields suffice to
capture the saturated limit and yet, as we have demonstrated in Part 1, that view
cannot be maintained in the case of convection at infinite Prandtl number; a more
complex structure is required. To summarize, conservative bounds are not assured
of immediate saturation with elementary test fields, while a multi-α expansion may
saturate in a small number of steps.

6. Free-slip numerical results
6.1. 1-α results

Now we consider the 1-α solution for free-slip boundary conditions, which contrasts
markedly with that for no-slip. This problem was first studied by Chan (1970), who
predicted that the upper bound consisted of a single-wavenumber solution behaving
as Nu ∼ Ra1/3, and with no ensuing bifurcation from that state. A careful numerical
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Figure 9. The balance parameter λ1, with limiting value of 7/4. The dashed line shows an
asymptotic fit, the dotted line the limit.

treatment of the 1-α solution is presented by Vitanov (1998) who, in his equation
(29), gives the following scalings:

Nu ∼ 0.3254Ra1/3, α1 ∼ 0.2011Ra1/6 as Ra → ∞. (6.1)

For an exponent of 1/3, consistent with the expansion given in (3.20), the limiting
value of λ1 is, as in § 5.2, 7/4. Using the same single-parameter fit as in (5.6), here
we obtain c̃1 = −1.1223. But we have an analytic prediction for c1 (derived in § 7.1)
and these data permit reliable estimation of c2 (≈0.9420), so we can in this instance
compare the freely fitted value to that implied by (3.21), which works out to c̃1 =
−1.1205. The difference appears within the probable range of fitting error. The result
using the empirical value of c̃1, shown in figure 9 (with added inset scale to match
the earlier figure 5), gives excellent agreement for Ra > 108. From the self-consistency
of this fit we conclude that Vitanov’s exponent for Nu is borne out. (Slight bumps
in the computed λ1 for Ra larger than about 1013 reflect the encroaching loss of
resolution.)

But in figure 10 we see that Vitanov’s assumption that α1 scales as Ra1/6 is invalid. As
we shall shortly prove, α1 → 5.5377856128012329 as Ra → ∞. This is in notable con-
trast to all other upper bounds problems of which we are aware, where α is consistently
a monotone increasing function of the control parameter in the problem. The reasons
for this, as well as the success of Vitanov’s prediction for Nu, are explored in § 7.1.

As with no-slip, in lieu of computing the constants appearing in the correction
terms to Nu, for which see (C 7), here too we simply make use of the expected form,
regarding higher-order constants as parameters to be fitted in an appropriate manner
reflecting the asymptotic nature of the expansion. The result, namely

Nu

0.32498941162098Ra1/3
= 1 − 2.7373Ra−1/3 − (2.1352 log Ra − 0.8815)Ra−2/3, (6.2)
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Figure 11. Comparison of the 1-α reduced Nusselt number to an asymptotic fit.

is plotted in figure 11, along with the actual ratio. As before, the leading-order
contribution is implicitly confirmed by pivoting the asymptotic expansion of the ratio
about a leading term of unity.

6.2. Multi-α results

Straus (1976a) did the first exploration of the possible bifurcation to multi-α solu-
tions for free-slip boundaries, concluding that no bifurcation of the 1-α occurs for
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Ra < 2.3 × 105. This is corroborated by our determination that the transition takes
place at 3.7713469 × 105.

We have already observed that the 1-α Nusselt function scales as Ra1/3. Calculations
of the asymptotics for 2-α reveal a Ra2/5 scaling, the analytic basis of which we
present shortly. The 3-α solution is found to scale as Ra31/75, consistent with a limiting
exponent of 5/12, coinciding with the conservative free-slip bound presented in Part 1,
and as speculated originally in Plasting (2004). The bifurcation to a 4-α solution occurs
at around Ra = 7×1011 but no points on the 4-α branch have yet been obtained owing
to numerical difficulties. (This does not seem to point to any underlying pathology
in the equations themselves, however.) To give the reader an overview, we show µ2 in
figure 12(a) along the one-, two-, and three-mode solution branches.

In figure 12(b) we show the accompanying α-bifurcation. The distinguished feature
of the free-slip α-bifurcation is saturation of the lowest wavenumber. This has been
noted earlier for the 1-α solution and is seen for 2- and 3-α solutions as well. We
conjecture that this obtains for all subsequent bifurcations.

Most of discussion for the 2-α solution is presented in Appendix D but we note
here a feature common to the 2- and 3-α solutions. As previously found for no-slip, µ1

and µ2 individually approach a common limit more slowly than does their difference.
In the case of the 2-α solution, equations (D 26)–(D 27) give reason to expect (3.25) to
apply, hence a slow transient that scales as Ra−1/5. Such a term provides a plausible
fit as seen in figure 13, where the limit of 2/5 is assumed, and two transients of
Ra−1/5 and Ra−2/5 fitted to the data for Ra > 2.6 × 1010. The data at smaller Ra
serve as an independent check of the expansion; a log plot of that difference shows
a successor scale of Ra−3/5. (A plot of Nu and the associated empirical fit appears in
figure 14.) On this observation, it is not surprising that an intermediate term before
the constant is also encountered in the solution for 3-α. Once more, plots of the fields

w and θ̂ are of limited use for the reasons noted previously. For this, the last of our
numerical study, it appears that the proper form for the expansion of Nu is a subtle
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curve is superimposed, following the empirical fit Nu = 0.10100Ra2/5 + 0.70965Ra1/5 − 7.166.

generalization of the form given in (3.25), namely

Nu ∼ 0.068197Ra31/75 + 0.329473 Ra4/15 − 0.504659. (6.3)

On an initial approach to the data, the previously useful diagnostic variables µ1,2

appear of little help. The reason is that, while µ1,2 certainly asymptote to 31/75,
for the form in (6.3), if µ1,2 are each expressed as we have so far done, as a series,
there are twelve independent transients of order greater than Ra−1. For exponents as
in (6.3) having a non-simple ratio, one must revert to the rational form, here (and
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invoking the coefficients in (6.3) symbolically for greater clarity)

µ1 =
31/75 c1 Ra31/75 + 4/15 c2 Ra4/15

c1 Ra31/75 + c2Ra4/15 + (c3 − 1)
.

The computed values of µ1 are used to estimate c2/c1 and (c3 − 1)/c1 based on a
least-squares fit to the rational form above. Figure 15(a) compares the computed
and fitted values of µ1,2; the difference is imperceptible. The ck given in (6.3) are
determined from a direct fit for Nu itself. The resulting ratio of c2/c1 agrees with the
value fixed by fitting µ1 with a relative error of about 10−4. The second ratio agrees
to 10−2. Here µ2 proves unreliable for fitting purposes, so instead we use the results
from µ1, but adjust (c3 − 1)/c1 to c3/c1 based on the value of c1 obtained from Nu.

As may be clear, the 3-α results are the most tentatively established of this study.
Indeed, given the two independent exponents and three coefficients of (6.3), unconfined
as yet by any analysis, it is only to be expected that any smooth curve such as Nu(Ra)
can be fit with high fidelity, but with little ability meaningfully to discriminate among
candidate exponent pairs. For our purpose, however, it is not the minimization of
least-square error per se (which error tends anyway to be a shallow minimum insofar
as exponents are concerned) but rather the distribution of the error that advantages
one fit over another. When Nu is fitted with functions unrelated to the terms in its
asymptotic expansion, the resulting error curve is of a nature generic to any least-
squares fit. The proper asymptotic fit has in comparison an error that is distinctly
one-sided. Unfortunately, this is not a unique prescription given data of moderate
precision, computed over a limited range and thus (6.3) remains provisional in nature,
not definitive. Using µ1 in lieu of Nu provides relatively greater selectivity for the
exponents. In figure 15(b) we fix the first exponent, µ = 31/75, and vary the second by
±1/75 about 4/15 (in each case optimizing the remaining coefficients). It will be seen
that the middle value is manifestly the distinguished one. It remains, however, that
a range of rational µ = p/q exists in the vicinity of 31/75, among which values the
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only heuristic discriminator is a presumption that p+q should be as small as possible
(as opposed, e.g. to µ = 1025/2478, which fits µ1 marginally better). While the choice
taken reflects that heuristic, it is not free of subsidiary complication. In particular the
behaviour of the largest wavenumber remains less certain. While it is possible that
α3,3 ∼ cRa6/25, such a result has, in contrast to the case of 2-α, no transparent relation

to the stated form for Nu, although it does suggest αN,N ∼ cRa(1−51−N )/4, at once
rationalizing all three branches explored here and coinciding in the limit of N → ∞
with the conservative result reported in Part 1. Lastly, (6.3) does not exhaust the
possible forms one might consider although, among those with only two terms larger
than a constant, it appears a distinguished choice. While a form with three terms
might well arise, limits on both the accuracy of the data and the available range in Ra
make it unlikely that one can usefully constrain the possibilities without a reasoned
argument to confine the class of analytic forms explored, particularly insofar as the
appearance of logarithms is concerned.

With this (tentative) identification of µ, we can finally anticipate the rest of the

members in the multi-α sequence, namely Nu ∼ cRaµ(k)

where

µ(k) =
5

12

(
1 − 1

5k

)
, k = 1, 2, . . . . (6.4)

As earlier observed, the optimal solution thus saturates with an exponent of 5/12,
the same value found for the conservative model presented in Part 1. Note that the
sequence beginning with (3.25) and (6.3) prefigures a general form with progressively
less attenuated transient contributions. This is paralleled in the form of the series found
by extended Richardson extrapolation to describe the exponent for the conservative
model, with terms in that case of Rak/12 for k = 5, 4, . . . . Anticipating such features
is crucial to a convincing fit of data of necessity confined to a limited range in Ra.

While the geometric sequence in (6.4) puts infinite-Prandtl-number convection with
free-slip boundary conditions in more familiar territory than the novel domain inhab-
ited by no-slip, it is nonetheless decidedly not the territory first identified by Busse.
The key element from which much follows is the discovery that α saturates in the
1-α solution. Compounding this anomaly is that the traditional view of how multi-α
solutions make successive contributions of wkθk sum to unity is wholly confounded
by the free-slip solutions. Both of these features are explored at length in § 7 and
the appendices, where we treat the 1- and 2-α solutions. The obscure relation of
wavenumber to Nu noted for the 3-α solution hints that even the complications of
the 2-α solution, which are considerable, do not completely exhaust the variational
possibilities. In this respect too free-slip conditions depart from the Busse scenario,
where bifurcations assume a fixed character right from the beginning. Without any
data from the 4-α branch, it is a bald assertion, if a reasonable hope based on the
experience of no-slip, that the 3-α solution is at last the template for all remaining
members in the series. But, as the analysis of the 3-α solution evidently shares little
immediate overlap with the antecedent cases, important though its delineation is, we
have chosen not to pursue it here.

7. Asymptotic solutions for free-slip
In their paper on convection for arbitrary Prandtl number, Vitanov & Busse (1997)

comment that ‘the [multi-α] method seems to fail in the case of stress-free boundaries’.
The novel character of the balances we explore in this section has some resonance
with that remark.
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In the discussion to follow, we adopt the normalization given by Chan, namely

w → 〈wθ̂〉−1/2Ra−1/2w and θ̂ → 〈wθ̂〉−1/2Ra1/2θ.

With this choice† (2.10) becomes

F = Nu − 1 =
1 − 1

Ra
‖∇θ‖2

〈(1 − wθ )2〉
, (7.1)

here maximized subject to 〈wθ〉 = 1 and (2.2) which, following the variable change
above, becomes

∇4w + ∇2
Hθ = 0. (7.2)

As before, ∇2
H is the horizontal Laplacian, 〈·〉 denotes a volume average, and ( · ) a

horizontal average. Boundary conditions are free-slip, as stated in (2.4).
The associated Euler–Lagrange equations can be simplified (equations 28(a, b) in

Chan 1971) to solving the two equations

1

RaF
∇6θ + ∇4

[(
1 − wθ − λ

F

)
w

]
+

(
1 − wθ − λ

F

)
∇4w = 0, (7.3)

∇4w + ∇2
Hθ = 0, (7.4)

where

λ =
1

2Ra
‖∇θ‖2 − 1. (7.5)

To recover the balance parameter as given at (3.7), the present definition for λ has to
be rescaled as λ → −2λ.

Owing to the special form of the nonlinearity in equation (7.3), multi-α solutions
(Busse 1969 b, 1970) can be sought of the form

[ w(x), θ(x) ] =

N∑
n=1

[ wn(z), θn(z) ]φn(x, y), (7.6)

where ∇2
Hφn = −α2

nφn and φnφm = δmn (the Kronecker delta function). Again without
loss of generality, isotropy in the (x, y)-plane permits the choice

φn =
√

2 cos αnx. (7.7)

(We adopt the prefactor of
√

2 for convenience in what follows.)
The equations are still too difficult to solve exactly but we present here an asymptotic

solution for N = 1, valid as Ra → ∞. We address N = 2 in Appendix D.

7.1. The 1-α solution

We look for a solution to maximizing F using the single-wavenumber ansatz

[ w(x), θ(x) ] =
√

2 [ w1(z), θ1(z) ] cos α1x. (7.8)

Numerical evidence suggests that α1 remains O(1) as Ra → ∞. This motivates the
pursuit of an asymptotic solution arranged into two regions: a boundary layer of size

† Because of notational needs for the boundary layers discussed here, the caret on θ , used
previously to denote a zero-mean field, is reserved as a marker for boundary layer structure. This
conforms to Chan’s original notation.
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O(δ) where ∂/∂z = O(1/δ) � α1, and the interior where ∂/∂z = O(α1) = O(1). This
assumption differs considerably from the ‘usual’ multi-α ansatz (Busse 1969 b, 1970;
Chan 1971; Kerswell 1996; Kerswell & Soward 1996; Kerswell 2002), where α1 scales
as an increasing function of Ra so that there are naturally three layers: an inner layer
where ∂/∂z = O(1/δ) � α1, an intermediate layer where ∂/∂z = O(α1) � 1, and an
interior where α1 � ∂/∂z = O(1).

The most evident characteristic of the 1-α numerical solution is that wθ is graph-
ically indistinguishable from unity except near the boundaries, where it must vanish.
This behaviour acts to minimize the denominator of (7.1) and thus to maximize F .

In seeking a solution we assume symmetry about the layer midplane z = 1/2 and
focus our attention on the domain z ∈ [0, 1/2]. Defining a boundary layer variable
ζ = z/δ and an interior variable ξ = α1z, we define boundary layer functions

ŵ(z) = w/(c1δ), θ̂ (z) = c1δ θ, (7.9)

where c1 is a free scalar, and interior functions

w̃(z) = α1w, θ̃(z) = θ/α1. (7.10)

In both cases the scalings are chosen to ensure ŵθ̂ = w̃θ̃ = O(1) (and subscripts for w

and θ have been suppressed). At leading order, the equations (7.3) and (7.4) become

w̃ θ̃ = 1,

(
d2

dξ 2
− 1

)2

w̃ = θ̃ , (7.11)

in the interior and

θ̂ (V I ) +

[(
1 − ŵθ̂

)
ŵ

](IV )

= 0, ŵ(IV ) = 0, (7.12)

in the boundary layer, where the thickness δ is chosen as (c2
1RaF )−1/4 to give a

coefficient of unity for θ̂ (V I ) (the superscripts indicate the number of ζ derivatives).
We now proceed by solving the interior problem

w̃

(
d2

dξ 2
− 1

)2

w̃ = 1, (7.13)

subject to the two symmetry conditions at the midplane, w̃′(α1/2) = w̃′′′(α1/2) = 0
(the prime denotes a derivative with respect to ξ ) and two boundary conditions at the
wall. The latter are determined by the requirement of matching to the inner solution
ŵ. From (7.12), ŵ is a cubic polynomial in ζ . The boundary conditions (2.4) disallow
both a constant and quadratic term and hence ŵ is restricted to linear and cubic
terms. But if the linear term is present, then a cubic term cannot simultaneously be
matched with the outer solution w̃ at leading order, hence we need only consider the
simplest possible solution, namely ŵ = ζ (where the constant of proportionality is set
to unity by a suitable choice of the parameter c1). That is, we need w̃ ∼ c1ξ as ξ → 0
and hence the interior equation (7.13) is to be solved subject to w̃(0) = 0. This alone
assures a suitable match insofar as c1 is concerned. Here we simply assert that the
appropriate second condition is w̃′′(0) = 0, reserving a justification of that statement
to Appendices B and C.

The resulting problem is a delicate one owing to the singularity of w̃(IV ) at ξ = 0:
hence we provide a complete characterization of the solution in (B 2). The conclusion
is that a solution w̃(ξ, α1) exists which importantly defines c1(α1) = w̃′(0, α1). At this
point, w̃ and θ̃ = 1/w̃ are known up to the value of α1, which is determined at the
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Figure 16. Dependence of the slope c1 at the origin on α1, showing that a maximum is
reached at a finite wavenumber, α∗
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very end of the analysis. What remains before this is to calculate θ̂ . Knowing ŵ = ζ ,
the equation for θ can be rewritten as

θ̂ (V I ) +
[
(1 − ζ θ̂ )ζ

](IV )

= 0, (7.14)

to be solved subject to θ̂ (0) = 0. The four solutions of (7.14) that satisfy this boundary
condition and also behave algebraically as ζ → ∞ are given in (A 5). Knowing that

ŵ = ζ , the solution for which θ̂ ∼ 1/ζ asymptotically is selected, namely

θ̂ =

√
πζ

8
�(3/4)

[
I1/4(ζ

2/2) − L1/4(ζ
2/2)

]
, (7.15)

where Iν is the modified Bessel function and Lν is the modified Struve function. Now
the value of F can be calculated to leading order

F =
1 − 1

Ra
‖∇θ‖2

〈(1 − wθ )2〉
≈ 1 − I/(Ra c2

1δ
3)

δJ
=

c
2/3
1 (α1)

(4 I )4/3
Ra1/3, (7.16)

where

I = 2

∫ ∞

0

θ̂
′2 dζ ≈ 0.53091206824548,

J = 2

∫ ∞

0

(1 − ζ θ̂ )2 dζ = 3I ≈ 1.59273620473644,

and the final expression for F in (7.16) is obtained following substitution for δ in
the intermediate expression and a little algebra. Finally, the last expression for F is
maximized over α1, which corresponds to maximizing c1, the slope at the origin. Again,
this is the point of departure from all previous examples: the slope is not a monotone
function of α1; as seen in figure 16 it overshoots c1(∞) by a few percent, approaching
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its asymptotic limit from above. The maximum occurs for α∗
1 = 5.5377856128012329,

which confirms the initial ansatz that α1 saturates at a value of O(1), and predicts
that c1(α

∗
1) = 0.8355433652593106. Substituting the values indicated, the predicted

asymptotic bound is then

Fmax ∼ 0.32498941162098Ra1/3 as Ra → ∞. (7.17)

As noted in the Appendix, (C 7) provides an explicit correction term of order
Ra−1/3 log Ra (with a subdominant contribution of order Ra−1/3). Figure 11 in § 6.1 is
seen to confirm all of these details.

Finally, the Vitanov (1998) 1-α prediction that Nu ∼ 0.3254Ra1/3 lies remarkably
close to the leading-order result for F given above and yet he assumes α1 → ∞
as Ra → ∞, in keeping with other upper bound problems. One sees on reflection
that the close correspondence is attributable to the marginal overshoot illustrated
in figure 16, with the result that c1(α

∗
1) differs only slightly from c1(∞) = 0.834210.

The inconsistency in Vitanov’s analysis is that he has selectively to include higher-
order terms, otherwise α1 is undetermined. (It is clear from his figure 4 that the
numerical results up to Ra = 107 are more consistent with α1 remaining O(1) than
that α1 ∼ Ra1/6 as Ra → ∞.)

We believe that the results of this section, in conjunction with the free-slip portions
of Appendices A–C, constitute the first complete asymptotic analysis of any 1-α
upper bound solution in the sense of a fully consistent match. The purpose of this
development is to support the general hypothesis in § 8, where we shall argue that
the entire fate of the multi-α sequence is determined by the possibility of a match of
the 1-α boundary layer to the interior. For this reason, that the match is obtained for
free-slip needs to be established beyond any possible doubt.

7.2. Generalization from the 1-α solution

The novel nonlinear balance above, with α1 tending to a constant, presages an
equally intricate balance for succeeding multi-α solutions. We do not yet have a
satisfactory understanding of the general case but do present a largely complete
theory in Appendix D for the case of 2-α. The key result is depicted in figure 17. In
striking contrast to all known examples of multi-α solutions, the vertical flux in the
innermost layer, w2θ2 (notation as in (7.8)), rises rapidly from zero but then fails to
saturate in the adjacent overlap region. Rather, it diverges as Ra1/5. The outer layer
responds with the same scaling but the opposite sign such that the sum of the two
remains O(1).

In concluding this section, we aim briefly to shed further light on the odd circum-
stance that the wavenumber remains O(1). For that purpose, it is instructive to
consider the generalized problem

(D2 − 1)2w̃ =
1

w̃
, w̃′(α1/2) = w̃′′′(α1/2) = 0,

w̃(0) = 0, βw̃′(0) + (1 − β)w̃′′(0) = 0,

⎫⎬⎭ (7.18)

regarding w̃′(0) as a parametric function of β . Free-slip is not singular in having a
finite value of α1 at which the slope at the wall is maximized. Rather, this persists in
the mixed boundary condition over a finite range, as one can immediately anticipate
from (B 3). Done as a shooting problem, the numerical solution requires extended
precision at values of about α1 � 4, so tracking the result is time-consuming (based
on the Taylor series extended precision solver in Maple). Figure 18 shows both α∗

1 and
the accompanying slope as a function of increasing β over a range where the answers
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Figure 18. Parameters for solution of the generalized problem defined at (7.18)
.

are thought to be accurate to at least ten significant digits. Apart from that we can
anticipate continuity of the 1-α solution branch for a finite range of β > 0, a deeper
motivation for presenting this generalization is that we shall find in Appendix D.1 that
(7.18) appears again as equation pair (D 12) and (D 15) for the leading-order interior
solution of the 2-α problem (though missing a statement of conditions on w̃1(ζ1)
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as ζ1 → 0). Recurrence of (7.18) follows on the observation that the accompanying
wavenumber, α2,1, also tends to a constant, 1.9662, as apparently does α3,1, suggesting
that (7.18) remains the appropriate interior equation in all cases, solved subject to
particular boundary conditions determined by matching at the origin. The relation of
continuity in the 1-α solution to successive bifurcations in the N -α family is a point
to which we shall return in the conclusion.

While arguments in Appendix D.1 rely on the thesis that α2,1 tends to some
constant, completing that discussion so as to derive the particular value selected
lies well beyond the scope of this paper. However, the general nature of the missing
elements can be anticipated by reference to Appendix D, where the needed ingredients
for the required match stemming from the inner limit of the outer layer are given.

8. Mixed boundary conditions
For a first synthesis of the two boundary conditions, we look to the comparison of

optimal background fields illustrated in figure 19. Because we have not yet determined
all the relevant scaling exponents that occur in a leading-order expansion of the free-
slip 3-α solution, the boundary layer presentations here are simply scaled by Raµ

with µ = 1/3 for no-slip (the saturated value) and µ = 31/75 for free-slip (the third
member in the geometric progression to 1/4). It is reasonable that the structures
shown have largely attained their asymptotic character. Each τ exhibits undershoot
of a few percent. The striking difference is seen in the outer region (figure 19c). Here
the no-slip undershoot leaves a negligible residue; the recovery to τ = 1/2 takes place
almost entirely in a boundary layer. By contrast, for free-slip only about one-third of
that recovery takes place in the boundary layer, the remaining two-thirds gives rise to
a roughly linear interior profile of τ with slope of about 1/10. From this distinction
we see why the background field in Part 1 – allowing for a residual interior slope –
yields the correct scaling for free-slip but fails for no-slip. The disparity in interiors
ultimately derives from the fact that matching is possible with (B 2) (as shown at
length in Appendix C) but not with (B 4), where subdominant terms are required to
effect the match (hence the exponential, rather than algebraic, recovery in the no-slip
τ ). From this understanding of the relevant makeup of τ , one can hope to craft a
still more refined version of the recent arguments by Doering et al. (2005) in order
to provide a rigorous justification of the exponents advanced here on the basis of
numerical and asymptotic reasoning.

The unifying synthesis hence is this: the essence of the upper bound solution for
infinite Prandtl number is that (B 2) is a regular limit of the general solution of
(7.18), while (B 4) is not. We argue that the subsidiary multi-α structure is completely
controlled by this classification of the 1-α solution in all upper bound problems. We
further propose that a geometric progression (as e.g. in the well-documented case
of plane Couette flow) occurs if, and only if, the 1-α solution for the midlayer is
continuable to adjacent boundary conditions via

βw′(0) + (1 − β)w′′(0) = 0 (8.1)

as a regular perturbation. This is assured whenever the leading-order midlayer
equation is linear, barring the unlikely case of a regular or irregular singular point
at the wall. An immediate consequence is that the 2-α and successor branches for
the no-slip solution cannot follow the exponent sequence given in equation (93) of
Chan (1971). This is consistent with figure 8, which clearly illustrates the departure
from the boundary conditions singularly associated with (B 4). But that the solution
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Figure 19. Comparison of the optimal background field, τ , for no-slip and free-slip boundary
conditions. The no-slip result is a 4-α solution at Ra = 4.59 × 1010. The free-slip is a 3-α
solution at Ra = 8.13 × 1011.

instead saturates at the particular limiting exponent of 1/3, and does so coincident
with the 3-α bifurcation, has of course to derive from subsequent considerations.

Similarly, that in reaching Nu<c Ra5/12, the free-slip branches have a smallest
wavenumber that saturates at a finite value and a divergent wkθk product (for 2-α and
above), rests on an intricate structure that we have elucidated only in the case of 1- and
2-α (and even then with certain lacunæ for the latter). While the continued saturation
is a natural enough corollary of the postulate on regularity, the divergence is surely not.

Notwithstanding that significant features of the multi-α solutions transcend a
complete characterization of the 1-α solution space for the generalized boundary
condition (8.1), we can begin to collect the seemingly disparate results from table 1
into a more coherent pattern following the further observation that (8.1) refers to the
midlayer solution. The combination of mixed-order derivatives means that the form
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Figure 20. The transition from free-slip to no-slip behaviour.

in general changes if referred to either interior or wall-layer coordinates, introducing
a dependence on Ra. For this purpose we introduce the variable β∗ to discuss possible
domains of interest with reference to the mixed boundary condition, as applied to w

in (3.2)–(3.5) (and presuming, by the extension of ‘natural boundary conditions’, the
same is applied to q).

Numerical experiments with the mixed condition (cf. (E 4)) lead us to the simple
two-part characterization depicted in figure 20. The first distinguishing feature of
contours of constant α is confined to a boundary layer in the vicinity of β∗ = 1. This
is the locus of points satisfying the condition ∂α(β∗, Ra)/∂β∗ = 0, graphically indicated
by the dashed curve, β∗

c (Ra), plotted in figure 20(b), and which is well fitted by

β∗
c ∼ 1 − 0.3033Ra−1/4. (8.2)

(Given the 1-α no-slip result that α ∼ Ra1/4, the form attained by β∗
c can hardly be

put down to coincidence.)
We observe that this curve serves at least qualitatively to define a border between

regions we shall term generalized free-slip and no-slip. More precisely, a 1-α
computation carried out along the curve β∗ = 1 − cRa−3/10 gives ample evidence
of a limit in which the controlling factor of Nu is Ra3/10 (for any c), whereas
β∗ = 1 − cRa−1/10 yields the limit Nu<c Ra1/3. We propose that the exponent 1/4 is
the critical value dividing the (β∗, Ra)-plane into the two regions. While the limits
become numerically more delicate to confirm, computations along β∗

c ≡ 1− cRa−1/4±ε

for ε → 0 are thus predicted to give the free-slip or no-slip scaling for ε positive or
negative respectively. A deductive basis for (8.2) is desirable, though far from apparent.
In view of the considerable complications of the no-slip solution, particularly the
considerations in Appendix C.2, an approach to breakdown at β∗

c coming from the
free-slip side may be more feasible. A suggestion of the form such a breakdown might
take is the parametric failure of a match paralleling that between the outer limit of
the inner solution, given in (C 4), with the inner limit of the outer solution in (C 5).
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Figure 21. Saturation of the wavenumber for generalized free-slip.

To speak of generalized free-slip, however, we must also address the behaviour
of α itself. This is the second part of the characterization remarked on above. We
have already seen evidence in figure 18 that the solutions of the midlayer equation
attaining maximum slope w′(0) for finite α continue over a finite range in β (again,
referred to midlayer coordinates). In figure 20(a), we plot two contours of constant
α from the full 1-α solution: the first at the value α = α∗ = 5.5377856128012329 (i.e.
the saturation value for free-slip), the second at α = 6. Evidently the first contour
acts as a separatrix, with all contours for α < α∗ that commence at β∗ = 1 on
the right intersecting the vertical line β∗ = 0, and the α∗ contour itself tangent to
that axis as Ra → ∞. The data on that contour are consistent with a power law,
β∗(α∗, Ra) ∼ c1Ra−0.36, the extension of which is plotted as a dashed line. Arguing
that the curve for β∗(α = 6, Ra) must obey an asymptotic relation with the same
power of Ra, a consistent fit requires that we introduce a second constant, thus
β∗(α, Ra) = c0(α) + c1(α)Ra−0.36. In this instance we find c0 ≈ 0.03. We can test
this proposal by doing a computation at fixed β∗ = 0.03 to see if indeed α → 6 as
Ra → ∞, along the dotted line in figure 20(a).

Figure 21, carried about two decades further in Ra than the data used from
figure 20 to extract c0, is in reasonable accord with that prediction. The choice of
α = 6 is principally in order that a plausibly demonstrated limit in Ra is obtained
quickly enough to require little computation, but otherwise arbitrary and thus entirely
representative. All contours, that is, with α � α∗ emerge from β∗ = 1, drop to a
minimum at β∗

c , and then turn upward, eventually becoming vertical. The asymptotic
expression of this is contained in the coefficient function we have denoted by c0(α),
and whose inverse α = c−1

0 (β∗) succinctly expresses the second defining feature of
generalized free-slip: that α tends to a constant as Ra → ∞. Thus c−1

0 (0) = 5.53...

and limβ∗→1 c−1
0 → ∞, with c−1

0 a monotone increasing function.
All of the numerical results described thus far refer to 1-α solutions. Recall, however,

that the initial hypothesis is a stronger one. We suggest the same division into
generalized free-slip and no-slip applies to the multi-α solutions, also as demarcated
by β∗

c , and with the significant codicil that multi-α solutions defined over a finite
region of β∗ as Ra → ∞ will always approach their N -α limit as a geometric series.
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In this view the no-slip condition ought to coincide with the result established in
Part 1 of Nu< c Ra7/20, and would do so as a conventional geometric progression,
were it not that exact no-slip is singular in the manner illustrated at such length in
Appendix B.†

Although couched in too specific a language of boundary-layer theory to illuminate
the most general basis for the singular classification of upper bound problems, this
picture nonetheless offers an appealing unified view of all the results reported. It
suggests the origin of the peculiar gap between the conservative no-slip bound from
Part 1 and the result found here of Nu< 0.139 Ra1/3 (although it does not immediately
suggest how better to pose the conservative model). Also, it possibly sheds light on
Constantin & Doering (1999) (and its successors), which established a no-slip bound
of Nu< c Ra1/3(log Ra)2/3 by making use of an additional, pointwise, logarithmic
bound for the second derivative of the vertical velocity. That estimate uses classical
methods in functional analysis for singular operators of so-called Calderon–Zygmund
type. The nature of the arguments to establish the bound depart considerably from the
CDH method in that the relevant quadratic form is no longer positive semidefinite,
so it is not self-evident that – in spite of enforcing more constraints – the estimate
so obtained must of necessity yield a tighter bound. It might be better viewed as a
bound relative to 7/20, on which it does improve, recognizing that the exact no-slip
bound with exponent of 1/3 rests in an essential way on the singular nature of the
β∗ → 1 limit, which the rigorous estimates used in Constantin & Doering (1999), Yan
(2004), and Doering et al. (2005) in no way reflect.

At the same time, the fundamental observation here of β∗ = 1 representing a
singular limit must not be thought unambiguously to represent some essential physical
aspect of infinite-Prandtl-number convection. As repeatedly emphasized in Ierley &
Worthing (2001), determining when a given set of constraints is ‘congruent’, i.e. leads
to a smooth variational solution, does not relate in any simple way to the smooth or
non-smooth behaviour of even substantially similar sets; each set is thus sui generis.
There is hence no basis on which to argue that the two particular integral constraints
used here enjoy a privileged role in the physics of convection. Far from it. Given
some other, congruent, collection of constraints applied to infinite-Prandtl-number
convection, a geometric series is more than likely to be obtained for no-slip, implying
a different form for the equivalent β∗

c (Ra) as well.
Naturally if additional constraints are used for no-slip then, however achieved, the

resulting bounds certainly cannot exceed the present superconvergent 3-α solution.
That is, a more tightly constrained problem must satisfy Nu � 0.139Ra1/3 on all its
SC-neutral branches. We might in consequence expect such added constraints will be
found to alter only the prefactor, although a reduction below 1/3 cannot rigorously be
excluded. Nonetheless, additional constraints for free-slip would seem the more likely
candidate for exponent reduction. Pertinent to that possibility, Jimenez & Zufiria
(1987) give an estimate of Nu ∼ 0.21 Ra1/3 for an exact solution of the equations with
free-slip boundary conditions, after maximizing heat flux over the wavenumber of the
solution (which estimate is numerically confirmed in Ierley & Worthing (2001)). This
constitutes a firm lower bound on range of improvement for free-slip.

† Because of its relative simplicity, a survey of the influence of (8.1) on the conservative bound is
probably an instructive point of comparison. As α ∼ Ra1/4 for both boundary conditions, one does
not expect a necessary coincidence of β∗

c for the conservative model with the one defined above
although, for consistency, the conservative border cannot lie further to the left.
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9. Conclusions
Conditioned, perhaps, by the (growing) number of elegant upper bounds for various

flows, a view that turbulence itself must also be ‘nice’ in some asymptotic sense
occasionally asserts itself. In justifying the relevance of variational bounds, various
writers have thus often appealed to the idea that the optimizing fields themselves
may have a suggestive and immediate physical relation to the realized flows, though
variational calculus is notorious for inducing pathologies.

But the 1-α basis of classification proposed here aside, there is very little else about
ensuing details of even the variational problem for infinite-Prandtl-number convection
that could merit the term ‘nice’; moreover the divergence of wkθk for free-slip (or near-
slip) boundary conditions is far more suggestive of a wholly variationally induced
peculiarity than some physical mode of instability.

Howard (1972) proposes a pragmatic, frankly utilitarian, view of bounds on flow
quantities:

One sometimes gets the impression, especially from reading general books about physics, that many

people regard a variational formulation as an essential component of a true and deep understanding of

the fundamental character of almost anything. This idealistic but rather narrow-minded attitude, a bit

akin to the once-popular view that planetary orbits must obviously be circles, probably limits scientific

progress somewhat, but when variational relationships are present or can be introduced it is prudent to

be aware of the fact and look for ways in which they can be put to use.

Such a measured view better describes the aim of this work and also the nature of its
findings. One must speak carefully of what physical significance, if any, can ultimately
be said to attach to this study. A circumspect statement is simply that the no-slip
boundary condition is more sensitive to the σ → ∞ limit than is free-slip. In what
respects this tentative distinction is mirrored by realized turbulent flows in the same
limit, and for very large Ra, remains very much an open question, than which few
could be of greater interest.

Such guarded optimism notwithstanding, within the field of upper bound theory
proper it is remarkable that a problem long the subject of intense study should yet
continue to turn up major surprises. Surely the central one, and the signal advance
of this work, is the identification of singularity as a departure from the canonical
N -α geometric series and a tentative understanding of the underlying cause on which
that distinction turns. But the results established here for free-slip must also figure
as a principal contribution since, pivotal though the geometric series is, it rests on
the more solidly grounded expectation commencing with Busse (1969b) (and most
generally elaborated in Kerswell (2002)) that maximization of flow quantities proceeds
from an interweaving of contributions from successive wavenumbers such that wθ

(or equivalent) rises to a constant immediately outside the innermost layer. But
universally the manner in which that has to date been demonstrated has the variables
in question remaining order one. The free-slip divergence exhibited here, no less than
the singularity of no-slip, derives from what we can now see as the defining property
of infinite-Prandtl-number convection regarded as an upper bound problem based on
the power integrals: the nonlinearity of (7.18), the leading-order interior expansion of
the Euler–Lagrange equation for w.
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Appendix A. Summary of the 1-α boundary layer expansion
A.1. Slip

The leading-order equation for the free-slip wall-layer is given by

θ̂ (V I ) + [(1 − ζ θ̂ )ζ ](IV ) = 0. (A 1)

There are four solutions consistent both with the boundary condition at the origin
and algebraic behaviour at infinity. These are

θ̂ (1) = ζ, (A 2)

θ̂ (2) = 1 +
�(3/4)√

2

[√
ζ I1/4(ζ

2/2) − 1

ζ 3/2

(
3I3/4(ζ

2/2) + ζ 2I7/4(ζ
2/2)

)]
, (A 3)

θ̂ (3) = �(3/4)

√
πζ

8

(
I1/4(ζ

2/2) − L1/4(ζ
2/2)

)
, (A 4)

θ̂ (4) =
π3/2

4�(3/4)

[√
ζ I1/4(ζ

2/2) − 3

ζ 3/2
L3/4(ζ

2/2) −
√

ζ L7/4(ζ
2/2)

]
− ζ 2

5
. (A 5)

The respective asymptotic behaviours of these, found from the equivalent integral
representations, are given by

θ̂ (1) ∼ ζ, θ̂ (2) ∼ 1, θ̂ (3) ∼ 1

ζ
, θ̂ (4) ∼ 1

ζ 2
.

The appropriate solution of (7.15) (and equation (23) in Vitanov 1998) is θ̂ (3). In its
representation in (A 4), Iν is the modified Bessel function, and Lν is the modified
Struve function. To facilitate computation of the integrals I and J arising for the 1-α

solution, we note that the full asymptotic expansion of θ̂ (3) is

θ̂ (3) ∼
∞∑

n=0

16n� (n + 1/2) � (n + 1/4) � (3/4)√
2π3/2ζ 4 n+1

=
1

ζ
+

2

ζ 5
+

60

ζ 9
+

5400

ζ 13
+ . . . . (A 6)

A.2. No-slip

The leading-order equation for the no-slip wall layer is given by

θ̂ (V I ) + [(1 − ζ 2θ̂ )ζ 2](IV ) = 0. (A 7)
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In this case there are five solutions compatible with the boundary conditions at the
wall:

θ̂0 =
√

ζ I1/6(ζ
3/3), (A 8)

θ̂1 = ζ 5
1F2 ([1], [11/6, 5/3]; ζ 6/36), (A 9)

θ̂2 = 9�(2/3)ζ 3 + 831/325/6π3/2ζ −5/2
[
L5/6(ζ

3/3) + ζ 3L11/6(ζ
3/3)

]
, (A 10)

θ̂3 =
√

ζL1/6(ζ
3/3), (A 11)

θ̂4 = ζ 2
1F2 ([1], [7/6, 4/3]; ζ 6/36), (A 12)

but each diverges exponentially. From this set we form the four differences θ̂ (k) =

θ̂0 −φkθ̂k for k = 1 . . . 4 with a suitable choice of φk . The resulting difference functions
have, in order, an asymptotic limit of ζ 1−k .

Note that θ̂ (3) = θ̂0 − θ̂3 is the choice that occurs in the 1-α problem analysed by
Chan (it emerges that φ3 = 1). The exact solution thus assumes the form

θ̂ (3) =

√
πζ

65/6
�
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2

3
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I1/6(ζ

3/3) − L1/6(ζ
3/3)

]
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1

ζ 2
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+ . . . (A 13)

and the relevant integral in the computation of F is given to higher accuracy as

I = 〈(θ̂ (3)′
)2〉 + 〈(1 − ŵ1θ̂

(3))2〉 = 1.1106455446632808.

(The notation of I follows Chan’s usage.)

A.3. On the numerical determination of free-slip boundary layer scalings

Diagnosis of numerical results for this problem always pivots about the innermost
layer. In most cases w in this region takes the form c1ζ

k , where k = 1 for free-slip
boundaries and k = 2 for no-slip, but the arbitrariness in c1 does not permit one to
ascribe a unique relation as a function of Ra between z, the exterior coordinate, and
ζ the boundary layer variable. Rather one looks to θ , whose governing equation, for
the free-slip w, assumes the form (A 7).

As observed, this equation has four admissible solutions, θ (k)(ζ ). The computed
solution for the relevant exact θ invariably reaches a maximum near the wall. So too
does each of the four admissible solutions. What is desired is an algorithm both for
uniquely determining the boundary layer scale as a function of Ra and also for fixing
the amplitude dependence. In general we do not wish, contrary to the particular case
of the 1-α no-slip solution, simply to integrate the governing equation four times in
order to reduce the order of the equation – thus discarding several possible solutions.
To do so, we would need to know more about the details of the match to the
succeeding layer and we are here instead devising a numerical procedure to approach
the diagnosis without prejudice as to the form of the match. Having elucidation of
that as the aim of the diagnosis, we proceed as follows.

For a succession of values of Ra, we take the computed θ , locate the point
zm associated with the boundary layer maximum and finally compute θ(zj ) for
0 � zj � ρzm, where ρ is a suitable value (typically 1.5 or so in order to have a
sufficient range past the maximum to distinguish among the various algebraic rates
of decay, but also not so far as to intrude into the next layer). We now have a double
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fitting procedure, namely to find

min
φk,ν

J∑
j=1

(
θ(zj ) −

4∑
k=1

φk(Ra)θ (k)(ν(Ra)zj )

)2

. (A 14)

The result of this minimization provides a unique relation, ζ = ν(Ra)z, as well as the
amplitude dependence for each of the four fundamental solutions. These solutions
form a complete set for (A 7) but this observation has to be supplemented by noting
that θ is, of course, not a solution of (A 7) because θ itself is an infinite sum of bound-
ary layer terms, only the first of which satisfies the homogeneous form above, though
homogeneous solutions recur at higher order also, as needed to satisfy boundary
conditions at the origin. On the assumption that inhomogeneous solutions are either
higher order than the relevant homogeneous contributions or, if of the same order as
one or more of the former, then at least numerically small over the region sampled, this
diagnostic procedure is then a fully objective method of determining the constitution
of the matched asymptotic expansion, in contrast to various informal methods more
typically applied. The stated assumption is verified at (C 18) in the case of application
to the 1-α free-slip solution, and observed empirically to hold in the instance of 2-α.

As the computed solution is given in spectral form, we can as easily evaluate it at
one point as another. Nonetheless, in practice it is easiest to evaluate it at an equally
spaced set of 100–200 values zj (relative to the location of the maximum, and thus
a function of Ra), and then to use cubic spline interpolation on previously stored
vectors containing finely tabulated values of the four fundamental solutions in order
to compute the variational quantity above over a range of values of φk and ν in the
course of minimization.

Appendix B. Intermediate layer: the leading-order 1-α solution
B.1. Formal expansions about the origin

B.1.1. Slip

The solution for the fourth-order problem

(D2 − 1)2w̃ − 1/w̃ = 0 (B 1)

subject to w̃ = w̃′′ = 0 at the origin leaves us with the two boundary conditions which
impose that the solution is symmetric about the midplane, namely

w̃′(α/2) = w̃′′′(α/2) = 0.

This is constructively viewed as a shooting problem, which shows that we require a
solution in the vicinity of the origin having two free (shooting) parameters. In the
free-slip case, such a solution can be found in a form generalized from that given in
Vitanov (1998), specifically

w̃ = c1ξ + c3ξ
3 + c

(1)
5 (c1, c3)ξ

5 + c
(1)
7 (c1, c3)ξ

7 + . . .

+

(
ξ 3

6c1

+ c
(2)
5 (c1, c3)ξ

5 + c
(2)
7 (c1, c3)ξ

7 + . . .

)
log ξ

+
(
c

(3)
7 (c1, c3)ξ

7 + . . .
)

(log ξ )2 + O(ξ 9(log ξ )3). (B 2)

In the instance that we instead impose w̃(0) = 0 and general values of w̃′(0) = c1,
w̃′′(0) = c2, and w̃′′′(0) = c3, the solution can be written as the sum of (B 2) plus a
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contribution (given here explicitly to avoid invoking a yet more general nomenclature
for the coefficients) of the form

δw̃ = c2
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(B 3)

This generalization allows us easily to accommodate the mixed boundary condition
described in the main body of the text, namely βw̃′(0) + (1 − β)w̃′′(0) = 0. In that
case we regard c2 = c2(c1; β) as a dependent variable and the resulting solution still
has the two free variables, c1,3, which are chosen to satisfy conditions at the midline.
From the form of δw̃, the case of β → 0 poses no difficulty, for then c2 → 0 and w̃

smoothly limits to the result given in (B 2). For β → 1, however, c1 → 0 and both
the explicit coefficients in (B 3) as well as those in (B 2) diverge. Hence no-slip is a
singular limit, with a solution to whose characterization we now turn.

B.1.2. No-slip

The no-slip solution is more involved, with a series solution in the form

w̃(ξ ) =
√

log 1/ξ

∞∑
j=1

ξ 2j

∞∑
k=1

(log 1/ξ )1−k

k∑
m=1

cj,k,m(log log 1/ξ )m−1. (B 4)

For later reference it is useful to observe that the inner limit of this takes the form

∞∑
j=1

(ζ1g1)
2j

∞∑
k=0

c̃j,k(log 1/ζ1)
k, (B 5)

where the c̃j,k depend upon log 1/g1 and the cj,k,m. The only solution compatible with
no-slip conditions is that for c1,1,1 = 1 and c1,2,1 = c(α), with all other coefficients
determined from these values. In other words, only one free matching parameter is
available for the limit of ξ → ∞.† Explicit expressions for the first few terms are

w̃(ξ ) =
√

log 1/ξ

{
ξ 2

[
1 +

1

log 1/ξ

[
c − 1

8
log log 1/ξ

]
− 1

128(log 1/ξ )2

×
[
(64c2 + 32c + 60) − (16c + 4) log log 1/ξ + (log log 1/ξ )2

]
+ . . .

]
+ ξ 4

[
1

6
+

1

48 log 1/ξ
[(8c + 2) − log log 1/ξ ] + . . .

]
+ ξ 6

[
1

120
+ . . .

]}
.

As with (B 2), it is merely an exercise in algebra to continue this expansion as far as
desired. While the appearance of (B 4) is at first glance forbidding, it is instructive to
note that the singular solution of the elementary transcendental equation

z = log(z/ε)

† Actually, c1,1,1 = ±1, but the second solution is simply the negative of the first so there is no
loss of generality in confining our attention to c1,1,1 = 1.



200 G. R. Ierley, R. R. Kerswell and S. C. Plasting

0.5 1.0 1.5 2.0 2.5 3.00

0.2

0.4

0.6

0.8

1.0

Leading order

Expansion to z9 

z

w
(z

)

Figure 22. Comparison of one- and nine-term truncations of (B 2) to the exact solution.

(the regular solution is the standard Lambert function) is of the form

z = log 1/ε +

∞∑
k=1

(log 1/ε)1−k

k∑
m=1

ck,m(log log 1/ε)m,

= log 1/ε

[
1 +

log log 1/ε

log 1/ε − 1
+

(log log 1/ε)2

2 (log 1/ε − 1)3
+

(log log 1/ε)3 (1 + 2 log 1/ε)

6 (log 1/ε − 1)5
+ . . .

]
,

that is to say, of the same basic form as the inner two sums in (B 4) (albeit with
elementary ck,m, which yield the second line directly).

B.2. Numerical solution

B.2.1. Slip

We used (B 2) with coefficients determined up to and including ξ 7 to determine the
vector (w̃, w̃′, w̃′′, w̃′′′) at a point near the origin from which to begin shooting to
ξ = α1/2.† The value of α1 is varied until the maximum of c1 is reached (as illustrated
in figure 16). From this procedure we find

α1 = 5.5377856128012329,

c1 = 0.8355433652593106,

c3 = −0.1640002693966280.

⎫⎬⎭ (B 6)

The expansion is corroborated in figure 22, where the series is computed to order
ξ 9 and compared to direct numerical solution of the w̃ equation. (The leading-order
behaviour is indicated by a dotted line.)

B.2.2. No-slip

The issue of matching aside (for which see Appendix C. 2), the contrast of the formal
solution (B 4) with that for free-slip boundary conditions (B 2) is more apparent than

† Note that the solution is less sensitive to the value of α1 hence it is less accurately fixed than is
the desired slope, c1. We therefore resorted to 128-bit arithmetic to ensure greater overall accuracy.
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real; at first glance it is difficult to see how to make use of this expansion since one
needs to satisfy two boundary conditions at the midline (ξ = α1/2), not one. But
because here α1 → ∞, rather than saturating at a finite value, it is plausible to apply
the single condition w̃(ξ ) → 1 for ξ → ∞ in order to determine a unique c (in the
expectation that derivatives of w̃ will automatically vanish).†

Practical numerical use of (B 4) is another matter. It transparently cannot converge
for |ξ | � 1, but it is more likely that the series does not converge at all. By comparison
there is little doubt that (B 1) with free-slip boundary solutions has a convergent
solution in the classical sense. Based on examination of the w̃ expansion to[

log log 1/ξ

log 1/ξ

]30

,

it emerges that the divergence is essentially captured in the bare subseries

(2)w̃(ξ ) = ξ 2
√

log 1/ξ

∞∑
k=1

c1,k,1(log 1/ξ )1−k. (B 7)

The innermost summand can, by rearrangement, be accurately summed as an adjunct
to this form. Define

c̃1,k,1(ξ ) =

∞∑
j=k

c1,j,j−k+1 χ(ξ )j−k, (B 8)

where

χ(ξ ) ≡ log log 1/ξ

log 1/ξ
,

and replace c in (B 7) above by c̃ to recover all the terms in ξ 2 in (B 4). This series
of functions defined in (B 8) is accurately evaluated with a Padé sum (Baker 1975)
of moderate order (e.g. typically 20S for [10,10] and |χ | < 1.) Interestingly, each c̃1,k,1

so evaluated (k = 1 . . . 6) indicates a first-order pole at, or quite near, χ(ξ ) = 4 when
c1,2,1 = 0. But χ is bounded by e−1 for real ξ , so the singularities are not realized.
We did not explore the dependence of this pole location on a range of c1,2,1. The
difficulty in summing (B 7) is basically unchanged following substitution of revised
values obtained from (B 8) since the latter are comparatively weak functions of χ for
the range of interest. Terms in the ‘bare’ sum (B 7) turn out, for large index, to be
asymptotically similar to a series of the form

∞∑
n=0

c1�(n+α1)�(n+β1)

(
2

log 1/ξ

)2n

+c2�(n+α2 +iβ2)�(n+α2 − iβ2)

(
2

log 1/ξ

)2n+1

,

(B 9)
which is usefully recognized as

c1�(α1)�(β1) 3F0

(
[1, α1, β1];

4

log2 ξ

)
+

2c2|�(α2 + iβ2)|2
log 1/ξ

3F0

(
[1, α2 + iβ2, α2 − iβ2];

4

log2 ξ

)
, (B 10)

† Applying two midline symmetry conditions for a finite domain, as for the free-slip case, is
doubtless possible where the second free parameter emerges from a subdominant series of terms not
captured with the present asymptotic expansion. Such terms, however, can only further complicate
the already formidable difficulties of summation.
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where

c1 = −0.0886909381,

c2 = 0.1705855590,

α1 = −0.3225964958,

α2 = 0.8759758375,

β1 = 1.066702846,

β2 = 0.4664575889.

If terms in (B 4) are grouped in powers of log log 1/ξ , the next set, linear in that
quantity, also tends to a similar pair of series with the constants

c3 = 0.0111804302,

c4 = −0.0108524652,

α3 = 0.3750000000,

α4 = −0.6852998399,

β3 = 0.720350910,

β4 = 0.4352998399.

but now the even terms having the form α3 ± iβ3 and the odd terms the real form,
and thereafter alternating in succession.

The form (B 9) is a generalized Stieltjes function and can be associated with a finite
value directly by means of its integral representation. Alternatively we can appeal to
the equivalent expression in terms of the Barnes generalized hypergeometric function

3F0.†
The hypergeometric function 3F0 ([1, α, β]; z) formally satisfies a third-order

ordinary differential equation whose general solution can be expressed in the
convergent form

ν1

z
1F2

(
[1], [2 − α, 2 − β];

1

z

)
+ ν2 z−(α+β)/2Iβ−α

(
2√
z

)
+ ν3 z−(α+β)/2Iα−β

(
2√
z

)
.

(B 11)

With this approach, summing the divergent series amounts to a determination of the
values of ν1,2,3 which match the particular solution singled out by the 3F0. This is most
readily done on the negative real axis first and then having due regard for branch cuts
in interpreting the solution elsewhere in the complex plane. The imaginary portions
of ν2,3 change sign for π < arg(z) � 2π. The result is

ν1 =
−1

(1 − α)(1 − β)
, ν2 =

π2

�(α)�(β) sin π(α − β)

(
1

tan πβ
− i

)
,

ν3 =
−π2

�(α)�(β) sin π(α − β)

(
1

tan πα
− i

)
(where the arguments are ordered such that β > α). This is a special case of the
general identity

p+1F0([1, {αk}]; z) ∼
p∏

k=1

(
1

1 − αk

)
1Fp

(
[1], [2 − {αk}]; − 1

z

)
+

πp∏p

k=1 �(αk)

p∑
k=1

(
1

tan παk

− i

)
z−αk

0Fp−1

(
[1 + αk − {α∗

j }]; −1

z

)

×
p∗∏

j=1

1

�(1 + αk − αj ) sin π(1 + αk − αj )
,

where ∗ denotes the restriction j �= k.
In general each of the functions in (B 10) is real only for negative real argument.

With the positive definite argument appearing here, they are naturally complex, with

† There is an extensive literature on this subject. In particular see Ichinobe (2001), which derives
a unique Borel sum for the general case of qFp−1 with q > p.
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an imaginary component whose asymptotic expansion, derived from Kα−β , is

Im {3F0([1, α, β]; x)} ∼ − π3/2

�(α)�(β)
e−2/

√
xx1/4−(α+β)/2

[
1 +

4(α − β)2 − 1

16

√
x + O(x)

]
as x → 0+. Substituting in the original argument of 3F0 from (B 10), the leading-order
behaviour of the first term is

−ic1π
3/2 ξ (log 1/ξ )α1+β1−1/2

(
1 + O

(
(log 1/ξ )−1

))
.

While the analytic continuation of the solution naturally induces an imaginary
component on the positive real axis, if we revert to the integral representation
for the solution, it is clear that a generalized Cauchy principal value exists. For

3F0, this amounts to simply discarding exponentially small terms from (B 11), leaving
the correct (purely real) asymptotic representation of that principal value. As an
elementary illustration, note that the asymptotic expansion previously given in (A 6)
can be rewritten as

ζ −1
3F0

(
[1, 1/4, 1/2];

16

ζ 4

)
.

Applying the results above, ν1 = −8/3, so the first term in the convergent
representation is thus

−ζ 3

6
1F2

(
[1], [3/2, 3/2 + 1/4];

ζ 4

16

)
.

But this is simply a standard hypergeometric representation of

−�(3/4)

√
πζ

8
L1/4(ζ

2/2).

The remaining pair of terms reduces to

�(3/4)

√
πζ

8

[
I1/4(ζ

2/2) + (1 − i)

√
2

π
K1/4(ζ

2/2)

]
and hence (A 6) is confirmed to be the correct asymptotic expansion of (A 4) as the
modified Bessel function K is exponentially small. The same considerations are easily
seen to apply, mutatis mutandis, to the asymptotic expansion for the no-slip boundary
layer solution (A 13), so it is then not surprising that the midlayer should have its
asymptotic expansion about ξ = 0 expressed essentially in terms of 3F0.

The determination of c1,2 and the other coefficients above, while here evaluated as
a numerical exercise, can be derived from an asymptotic solution of the recurrence
relation associated with (B 4) by the discrete analogue of Laplace’s method, with the
above as the leading-order term and an asymptotic series of algebraic corrections
in 1/n thereafter. At issue is simply whether the technical complications for general
ck,l,m merit the effort to carry the analysis to completion.† Even given such a result

† The recurrence relation for the series by equating independent terms in the differential equation,
each of the form ξ 2i (log 1/ξ )j (log log 1/ξ )k , to zero. The general expression so determined cannot
be reduced to fewer than twenty–two double sums, each quadratic in the cl,m,n. This form is
evaluated for sequentially increasing values of i and j : for a given (i, j ) pair, the complete group
of c coefficients associated to k = 1 . . . j is determined as the solution of a tridiagonal system.
The associated matrix (whose entries are found from previously determined values of c) remains
well-conditioned to large order.
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to facilitate the immediate problem of summing (B 7), it would have to be modified
further for the corrections induced by (B 8), the initial tendency of which we have
sketched above. One can alternatively view the corrections as leading to revised
coefficients [c1,2(χ; c), α1,2(χ; c), β1,2(χ; c)] by means of the Padé sums developed in
(B 8) (the values above are c1,2(0, 0), etc.) leaving one to evaluate the single pair of
modified 3F0 functions as a Borel sum.

For completeness we remark that one might use optimal asymptotic truncation but
this places severe limits on accuracy, particularly for derivatives of w̃, and appears to
preclude a determination of c based on shooting. Rather, following Chan’s approach,
we use the Green’s function for the no-slip problem, which can be written

G(x, z) = 1/4(1 + |z − x|)e−|z−x| − 1/4(2xz + x + z + 1)e−x−z,

and which we note is symmetric under the interchange of x and z. Chan restates the
nonlinear differential equation as an iterative integral one, namely

w̃n+1(z) =

∫ ∞

0

G(x, z)

w̃n(x)
dx. (B 12)

The integral can be broken down into∫ δ

0

+

∫ γ

δ

+

∫ ∞

γ

dx,

where the first quadrature must be designed accurately to evaluate terms of the form∫ δ

0

xj (log 1/x)−k/2(log log 1/x)m dx,

with j � 0, k � 1 and 0 � m � (k − 1)/2. The last integral is done analytically, with
errors that can be bounded based on the large-ξ behaviour of w̃, namely

w̃ ∼ 1 + c1e
−1/2

√
23/2+2 ξ cos(1/2

√
23/2 − 2 ξ + c2).

Any standard quadrature scheme is adequate in the midrange, δ < ξ < γ , where
1/w̃(x) is perfectly well behaved, as is G(x, z) save for being only C2 at x = z. (In
our computation we used δ = 0.1 and γ = 35.)

Figure 23 shows residuals after subtraction of both the one-term approximation,
ξ 2

√
log 1/ξ , and also the optimal asymptotic truncation of (B 4). Over the range of ξ

shown, the latter corresponds to keeping all terms up to, and including,(
log log 1/ξ

log ξ

)8

,

with an expected relative error of not more than about 3×10−5. The value of c is varied
to produce the least residual, with a resulting estimate of c = 0.1248, notably less
precise than for the free-slip case. The limit on accuracy of the truncation precludes
the possibility of significant further refinement, and happens to coincide with the
estimated limit on accuracy of the computed solution of the integral equation. While
computation falls short of being a proof, figure 23 does indicate consistency between
the numerically determined solution of (B 1), recast as an integral equation, and the
determination of c based on the optimal asymptotic truncation of (B 4).

Finally it remains to discuss the matching of (B 2) and (B 4) with the innermost
layer.
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Figure 23. Determination of the single parameter in the no-slip expansion (B 4).

Appendix C. Matching of 1-α intermediate and wall layers
C.1. Free-slip

We have so far simply assumed the two boundary conditions in (B 1) at ξ = 0,
with the remarkable consequence of α1 tending to a constant. This assumption, while
evidently correct on the numerical evidence, is not a trivial point. In the main body
of the paper, we have established a match such that

lim
ζ→∞

c1δŵ = lim
ξ→0

1

α1

w̃ =
c1 ξ

α1

,

but this constitutes only half a solution. Looking for a match of (B 2) that accounts
for c3 as well can be considered to close the problem in the sense that we will then
have established a global relation, i.e. one linking both free conditions at ζ = 0 to the
value of the solution on the midline determined by imposing w̃′(ξ = α1/2) = w̃′′′(ξ =
α1/2) = 0, and hence justified the complete statement of the leading-order midlayer
problem. In view of the considerable novelty of the free-slip solution, we suggest this
is a point worth establishing beyond doubt.

Noting that the relevant term in (B 2) is cubic in ξ indicates the need of a boundary-
layer expansion to three terms. We represent the general series as

w =
c1 g1

α1

∞∑
k=0

gk
1ŵ1,k, θ =

α1

c1 g1

∞∑
k=0

gk
1 θ̂1,k. (C 1)

In the main body of the text, where only the leading-order problem is considered,
the notation is slightly different. The relation is g1 = α1δ. Because there are frequent
points of comparison with Chan for the equivalent expansion of no-slip, we have
preferred to adopt his g1 as the common notation throughout this appendix.

The ŵ equations are

ŵ
(IV )
1,0 = 0, ŵ

(IV )
1,1 = 0, ŵ

(IV )
1,2 = θ̂1,0/c

2
1 + 2ŵ′′

1,0.
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Again, ŵ1,0 = ζ . For the moment we pass over the homogeneous solutions for ŵ1,1

and look for the solution of the third equation. The form ŵ1,2 can be found explicitly†:

ŵ1,2 =

[
γ1ζ + γ3ζ

3 +
ζ �2 (3/4)√

8π c2
1

2F3

([
−1

2
, −1

4

]
,

[
1

2
,
3

4
,
5

4

]
;
ζ 4

16

)
− ζ 7

5040 c2
1

3F4

([
1, 1,

5

4

]
,

[
2,

9

4
,
5

2
,
11

4

]
;
ζ 4

16

)]
. (C 2)

The coefficients γ1,3 allow for the homogeneous solutions at second order. The
remainder is a particular solution. The generalized hypergeometric representation
is computationally useful only for small to moderate argument since each of the

pFq functions above grows like exp(ζ 2/2), see 5.11.2(8) in Luke (1969). A complete
asymptotic statement is problematic for general pFq , even in the case of 2F2, as noted
in Ierley & Ruehr (1986). Asymptotic results are instead facilitated by the equivalent
integral representation of this particular solution, for the derivation of which, both in
this and the case of no-slip, we are indebted to Otto Ruehr who, in addition provided
the asymptotic expansion of the resulting no-slip integral, which is notably difficult
to establish. Setting aside the factors of c2

1, the relevant integral is

1

12

∫ 1

0

ds
4

√
1 − s2

∫ ζ

0

y(ζ − y)3e−sy2/2dy +
�2(3/4)ζ√

8π
. (C 3)

From (C 3) it can be shown that the limiting behaviour of the particular solution is

ζ 3 log ζ

6
+

ζ 3

12

[
γ +

log 2

2
− π

4
− 11

3

]
+

�2(3/4)ζ 2

23/2
+

1

12ζ
+

1

28ζ 5
. . ., ζ → ∞. (C 4)

(The hypergeometric form in (C 2) and (C 4), carried to three more terms, suffice to
cover essentially the entire range of ζ , with a practical cross-over at about ζ = 3.)

To match this we observe first a special property of the form that the expansion in
(B 2) takes. For a general change of scale, ξ = g1ζ , it proves convenient to introduce
a relation

g1 = e6(ν−1)c1c3

defining ν as an alternative variable. With this notation, it can be easily verified that
the resulting series is (to all orders) as in (B 2) but with ξ replaced by g1ζ in the
algebraic terms, ζ in the log terms, and c3 replaced by νc3. The parameter c3, in other
words, functions as a scale parameter for the solution (e.g. with the ‘natural’ scale,
g1 = exp(−6c1c3), all terms in (B 2) containing c3 vanish). With this notation the inner
limit of the outer solution is conveniently written as

g1c1ζ + g3
1

(
νc3ζ

3 +
ζ 3

6c1

log ζ

)
+ O(g5

1). (C 5)

Comparison shows that we must take

c1γ3 = νc3 − 1

12c1

[
γ +

log 2

2
− π

4
− 11

3

]
, γ1 = 0. (C 6)

Strictly, the appearance of ν in this match indicates that (C 1) has to be generalized as a
double expansion in g1 and log g1 but as this affects terms beyond the order considered

† A caution to readers: as of this writing, Maple v.9 does not correctly integrate powers, zj ,
times the generalized hypergeometric function of argument zk when, as is nearly always the case
here, j � k − 1. These simply have to be done by hand.
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here, we omit that formal development in the interest of brevity. It suffices here to note
that the quantity 〈(1 − wθ)2〉 appearing in the denominator of (7.16) is corrected to

δJ

(
1 − 24/3 α2

1

9 c
10/3
1 I 1/3

Ra−2/3

(
2

3
log Ra + γ +

log 2

2
− π

4
− 11

3

)∫ ∞

0

dζ (1 − ζθ1,0)θ1,0ζ
3

)
≈ δJ

(
1 + (3.9599150 log Ra − 20.9575070)Ra−2/3

)
. (C 7)

The same considerations show that K and L in (25) of Vitanov (1998), in that work
assumed constant, are both O(log Ra). Inversion of (C 7) in (7.16) changes the sign
of the correction and is to be compared to the purely empirical values given in
(6.2). The difference between the two is attributable to similar corrections arising
from two other integrals, linear in θ1,2. These are somewhat troublesome to evaluate,
having products of various derivatives of pFq present as inhomogeneous terms in
the governing equation for θ1,2.

Certainly, without the second parameter c3 in the solution for the middle layer, a
discussion of matching at second order is seriously incomplete. But even with this
term, it is seen that the matching procedure fails at O(g3

1ζ
2) owing to the term in

ζ 2, which cannot be countered with a homogeneous solution of the equation for ŵ1,2

without violating the boundary condition that ŵ′′
1,2(0) = 0. This incompatibility is a

recurring problem at all orders, i.e. one can never match a term from the inner layer
of the form g

j

1ζ
k for j �= k. The inner layer does generally mix orders since individual

asymptotic expansions are independent of g1 (though not of its log, through ν) and
this fact naturally introduces a sequence of powers of ζ , but all with a common
prefactor in g1. Neglect of mixed-order terms in the match is equivalent to saying that
the wall layer is completely passive, that is, adapts to an imposed exterior solution,
and of course this is not true; there is some modification of the interior, that is, a scale
sensitivity lacking in (B 2) and which sensitivity would be reflected in, for example,
the needed quadratic correction.

What is required to effect a match is a suitable expansion, the structure of which is
not hard to anticipate, namely

ω̊1 =

∞∑
n=0

gn
1 ω̊1,n, (C 8)

θ̊1 =

∞∑
n=0

gn
1 θ̊1,n, (C 9)

where θ̊1,0 = 1/ω̊1,0. (Again following Chan, we now switch from w̃ used in the main
text to ω̊ in order to make free-slip and no-slip as notationally similar as possible.)
We also take

− λ

F
= λ̂ g1 + O(g2

1), λ̂ =
7 I

2 α1

,

with the numerical value of I as given in (7.17). As earlier, we rescale z with α1. The
equations for the next corrections, ω̊1,1 and θ̊1,1, are a coupled set given by

(D2 − 1)2ω̊1,1 = θ̊1,1, (C 10)

(D2 − 1)2(ω̊2
1,0̊θ1,1) + ω̊1,0̊θ1,1(D

2 − 1)2ω̊1,0 + (D2 − 1)2(ω̊1,1)

+
ω̊1,1

ω̊1,0

(D2 − 1)2ω̊1,0 = 2λ̂ (D2 − 1)2ω̊1,0. (C 11)
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It is helpful to eliminate θ̊1,1 using the first equation and get a single, eighth-order,
equation for ω̊1,1.

The eight homogeneous solutions have to be deduced individually as the origin is
an irregular singular point. The key one is that required to match the term of order
ζ 2 in (C 4). The relevant series expansion begins as

ω̊
(2)
1,1 = ξ 2 +

(
log ξ

270 c2
1

− 1

8640 c4
1

− 7

2700 c2
1

+
c3

45 c1

− 1

216

)
ξ 6 + . . . , (C 12)

with the same constants c1,3 as in (B 2). This and three further solutions, which behave
as 1, ξ 2 log ξ , and ξ 3 log ξ , respectively are invoked here and at higher order as needed
to match the outer limit of successive contributions to the inner solution.

The remaining four solutions have forms that can be guessed fairly readily. These
are

ω̊
(1)
1,1 = ξ − log ξ

720 c4
1

ξ 5 +

(
log2 ξ

15120 c6
1

+ . . .

)
ξ 7 + . . . , (C 13)

ω̊
(3)
1,1 = ξ 3 +

(
log ξ

210 c2
1

− 1

100800 c4
1

− 149

44100 c2
1

+
c3

35 c1

− 11

4200

)
ξ 7 + . . . , (C 14)

ω̊
(4)
1,1 = ξ 4 +

(
− log ξ

45 c2
1

+
7

450 c2
1

− 2 c3

15 c1

+
7

90

)
ξ 6 + . . . , (C 15)

ω̊
(5)
1,1 = ξ 5 +

(
− log ξ

21 c2
1

+
149

4410 c2
1

− 2 c3

7 c1

+
13

210

)
ξ 7 + . . . . (C 16)

We now seek a homogeneous correction in the form

�2(3/4)

23/2c1

ω̊
(h)
1,1 where ω̊

(h)
1,1 =

[
λ

(h)
1 ω̊

(1)
1,1 + ω̊

(2)
1,1 + λ

(h)
3 ω̊

(3)
1,1 + λ

(h)
4 ω̊

(4)
1,1 + λ

(h)
5 ω̊

(5)
1,1

]
, (C 17)

and the coefficients λ
(h)
k are chosen so that ω̊′

1,1(α/2) = ω̊′′′
1,1(α/2) = ω̊

(V )
1,1 (α/2) =

ω̊
(V II )
1,1 (α/2) = 0. The last two conditions arise from reduction of the pair of fourth-

order equations for ω̊1,1 and θ̊1,1 into a single equation. This disposition of the
homogeneous solutions contrasts with no-slip, where we need to determine the far-
field behaviour of each as exponential growth or decay, omitting all the former. But
the latter must then be paired with the available local expansions about the origin.
In view of the complexity of the governing equations, that connection problem can
only be solved numerically while here it could be completed essentially analytically
given sufficient care in Padé summation of the series involved.

The leading terms for the particular solution for ω̊1,1 take the form

ω̊
(∗)
1,1 =

1

360c3
1

ξ 5 log ξ + O(ξ 7(log ξ )2). (C 18)

Boundary conditions at the midline are satisfied as in (C 17), giving an augmented

particular solution of λ̂ ω̊
(p)
1,1 where

ω̊
(p)
1,1 =

[
λ

(p)
1 ω̊

(1)
1,1 + ω̊

(∗)
1,1 + λ

(p)
3 ω̊

(3)
1,1 + λ

(p)
4 ω̊

(4)
1,1 + λ

(p)
5 ω̊

(5)
1,1

]
, (C 19)

with the λ
(p)
k determined in the same manner as the λ

(h)
k .
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(h) (p)

λ1 −0.958768 −0.278473
λ3 −0.528599 +0.068177
λ4 +0.186566 −0.046239
λ5 −0.050859 +0.020484

Table 2. Computed coefficients λk in (C 17) and (C 19)

The necessary inclusion of ω̊
(1)
1,1 in (C 17) and (C 19) means that the slope of the

wall layer at the origin, γ1 – previously taken as zero – is instead given by

γ1 =
λ

(h)
1 �2(3/4)

23/2g1c1

+
λ

(p)
1 λ̂

g1

. (C 20)

Formally this correction should be incorporated as a term of order O(g2
1), that is a

homogeneous contribution to ŵ1,1, which accounts for the appearance of g1 in the
denominators above, but this is a minor detail if we do not pursue matching beyond
O(g3

1). The remaining terms introduced through (C 14)–(C 16) are higher order in
g1 when carried to the inner layer and need not be considered further. We have
a tentative reason now to regard the match as satisfactorily resolved at O(g3

1) and
require only for numerical confirmation.

Comparison requires care in defining the constants. We use a well-resolved
computation at Ra = 3.769 × 1011 with α1 = 5.49356168. For this α1 we require
the associated c1,3 (in place of the limiting values indicated in Appendix B), found as
a byproduct of computing ω̊1,0 to be

c1 = 0.835541474428, c3 = −0.164064858206.

The values of c1,3 uniquely determine the linear solutions of (C 10)–(C 11), so we turn
now to a determination of the λk .

We have carried out the expansions of (C 12)–(C 16) and (C 18) up to order ξ 11.
Because derivatives up to order seven from these expansions are required as initial
conditions, a desire for high accuracy suggests commencing integration with as small
a value of ξ as possible. Working against this with finite-precision arithmetic, however,
is that the seventh derivative of ω̊

(1)
1,1 scales as ξ−2 for ξ → 0. Comparison of double-

precision integrations commencing at ξ = 10−5 and 10−6 shows relative differences of
about 10−7 in the resulting derivative values at ξ = α1/2, so these values were refined
using extended precision starting from ξ = 10−8. Table 2 shows the values of the λ

(h,p)
k

so computed. We now fix

g1 =

(
4 I

c2
1R

)1/3

= 0.001102361082

using the leading-order result for F (cf. the line following (7.12)).
In § 7 we give the rescaling from the CDH basis to Chan as

w → 〈wθ̂〉−1/2Ra−1/2w and θ̂ → 〈wθ̂〉−1/2Ra1/2θ,

in accord with his normalization that 〈wθ〉 = 1. For an examination of the first
correction beyond leading order, it is thus necessary to rescale with care, recognizing
that the asymptotic solution as constructed thus far leads to 〈wθ〉 = 1 + a1g1 + O(g2

1)
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Figure 24. (a) A comparison of the computed and predicted dwθ/dξ for free-slip boundary
conditions. (b) The error in the prediction.

where

a1 = 2/α1

∫ α1/2

0

�2(3/4)

23/2 c1

L
(
ω̊

(h)
1,1

)
+ λ̂L

(
ω̊

(p)
1,1

)
dξ

− 2/α1

∫ ∞

0

[
1 −

√
π

8
�(3/4) ζ 3/2

(
I1/4(ζ

2/2) − L1/4(ζ
2/2)

)]
dζ, (C 21)

and

L ≡
[
ω̊1,0

(
D2 − 1

)2
+ ω̊−1

1,0

]
.

The first term accounts for the interior wθ correction found in this section, the second
for the deficit due to the rise of the leading-order boundary layer from zero at the
wall to its asymptotic value of unity.

For a first comparison we can, however, sidestep delicate corrections to the
normalization, which need primarily arises if we look at the difference α1w − ω̊1,0,
and instead focus on

g1L
′
(

�2(3/4)

23/2 c1

ω̊
(h)
1,1 + λ̂ω̊

(p)
1,1

)
,

where the prime denotes d/dξ . One can prove the convenient and altogether
remarkable identity

L′(ω̊(h)
1,1) =

[
4 c2

1 − 1 − 24 c2
1 λ

(h)
4

24 c2
1λ

(p)
4

]
L′(ω̊(p)

1,1) (C 22)

and, details of matching coefficients aside, we have then the elementary prediction that

dwθ

d ξ
= constL′(ω̊(h)

1,1) (C 23)

for a suitable choice of a single constant. For this comparison we first normalize the
CDH solution, as in § 7, to 〈wθ〉 = 1. In figure 24, we use an empirically determined
value for the constant, −1.315806 × 10−4. Figure 24(b), showing the difference, clearly
illustrates the vestigial influence of the wall layer. Its contribution is easily computed
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to be −8g4
1/ξ

5 and a second line has been plotted showing that contribution –
which does not require an interior match – subtracted out. What remains is a rapid
oscillation, largest at the ends of the intervals. This reflects the numerical resolution
limit of the solution. Note that a relation like (C 22) does not hold in general. It fails,
for example, in the case of the (augmented) homogeneous solution based on ξ 3 log ξ .
Hence that the correct solution is composed of the specific constituents ω̊

(h,p)
1,1 stated

is decisively established.
To confirm their predicted amplitudes, we turn finally to the expansion

α1 w ∼ ω̊1,0 + g1

[
�2(3/4)

23/2 c1

ω̊
(h)
1,1 + λ̂ ω̊

(p)
1,1

]
.

As Chan’s variational formulation is predicated on 〈wθ〉 held fixed at unity, while the
posited solution has 〈wθ〉 ∼ 1 + a1g1, we can restore the required normalization by
the transformation

ω̊1,1 → ω̊1,1 + γ1ω̊1,0 θ̊1,1 → θ̊1,1 +
γ1

ω̊1,0

.

With this transformation (C 10) is unchanged, while in (C 11), λ̂ → λ̂−2γ1. By solving
for γ1 from

γ1 = −a1(γ1)/2

where λ̂ in (C 21) is replaced by λ̂−2γ1, then 〈wθ〉 = 1 holds at O(g1). This computation
gives γ1 = 0.81837990, which predicts a constant in (C 23) of −1.31242 × 10−4,
consistent with the empirical determination reported above. The renormalized forms
for w and θ now assume the form

α1 w ∼ ω̊1,0 + g1

[
�2(3/4)

23/2 c1

ω̊
(h)
1,1 + λ̂ ω̊

(p)
1,1

]
+ g1γ1

[
ω̊1,0 − 2 ω̊

(p)
1,1

]
, (C 24)

θ/α1 ∼ ω̊−1
1,0 + g1

[
�2(3/4)

23/2 c1

θ̊
(h)
1,1 + λ̂ θ̊

(p)
1,1

]
+ g1γ1

[
ω̊−1

1,0 − 2 θ̊
(p)
1,1

]
, (C 25)

where θ̊ (h,p) are found from the corresponding ω̊(h,p) by use of (C 10). Figure 25 com-
pares the interior error in the leading-order approximations for w and θ with the error
of (C 24)–(C 25). The perceptive reader will note that, while the second-order errors
in w and θ are evidently well resolved in figure 25, the equivalent error in dwθ/dξ as
presented in figure 24 appears to be beyond the resolution limit of the computation.
The reason for the discrepancy is subtle. The linear eighth-order operator deriving
from (C 10)–(C 11) applies to ω̊1,k for all k � 1; hence we can anticipate a contribution

from the homogeneous solution ω̊
(h)
1,1 at every order. The empirical determination for

the constant appearing in (C 23) unavoidably includes all of these and hence the
residual plotted in figure 24 is not strictly second order. Lastly, it will be evident how
to use the above expressions in conjunction with the boundary layer expansions to
compose uniform asymptotic approximations valid over the entire interval in z.

We have now completed the free-slip asymptotic match, confirming the development
of (C 10)–(C 19) in every particular and thus vindicating the boundary conditions
asserted in § 7.1 for the interior w̃ equation, so we turn finally to the match for no-slip.

C.2. No-slip

As one might anticipate from the crucial role above of c3, the absence of an equivalent
second free parameter in (B 4) means that the matching must have a somewhat
different character than the free-slip case, as indeed appears.
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Figure 25. The logarithm (base 10) of the leading- and second-order errors in the interior
predictions for θ and w.

One can first simply integrate the asymptotic relations in the wall hierarchy order
by order to see if a consistent match might possibly be made to (B 4). Following that
programme (and cancelling superfluous terms) we obtain

ω̂1,0 ∼ ζ 2
1 ,

ω̂1,1 ∼ ζ 2
1

[
1

2
log 1/ζ1 + γ1

]
,

ω̂1,2 ∼ ζ 2
1

[
−1

8
log2 1/ζ1 + γ1 log 1/ζ1 + γ2

]
,

θ̂1,0 ∼ ζ −2
1 ,

θ̂1,1 ∼ ζ −2
1

[
−1

2
log 1/ζ1 + 2γ1 +

1

4

]
,

θ̂1,2 ∼ ζ −2
1

[
3

8
log2 1/ζ1 −

(
3

8
+

9γ1

2

)
log 1/ζ1 + const

]
,

where the constants γ1 and γ2 in each case are determined by matching to the middle
layer.

But as the detailed solution for ŵ1,2 with free-slip boundary conditions illustrates,
this is not a complete characterization of all possible terms (though all the ones
above are certainly present). As with the free-slip case, the detailed solutions for
Chan (equations 44a,b) using the related expansion (47a,b) quickly become infeasible
to follow but one can again produce an exact particular solution for ω̂1,1, namely

ω̂1,1 =
ζ1

5 3
√

2
√

3

480π
4F5

([
1

3
,
1

2
,
2

3
,
5

6

]
,

[
7

6
,
4

3
,
3

2
,
5

3
,
11

6

]
;
ζ 6
1

36

)
�3 (2/3)

− ζ1
8

20160
5F6

([
5

6
, 1, 1,

7

6
,
4

3

]
,

[
3

2
,
5

3
,
11

6
, 2,

13

6
,
7

3

]
;
ζ1

6

36

)
. (C 26)



Infinite-Prandtl-number convection. Part 2 213

Once again for the asymptotic behaviour it is preferable to use the integral representa-
tion, namely

1

18

∫ 1

0

ds
3

√
1 − s2

∫ ζ

0

y(ζ − y)3e−sy3/3 dy. (C 27)

The asymptotic expansion of this is

π3/262/3
√

3ζ 3

162� (5/6)
+

ζ 2

2
log 1/ζ +

(
1

4
− γ

6
+

log (3)

24
+

π
√

3

72

)
ζ 2

− �2 (2/3) 3
√

2
3

√
3

6
ζ +

�4 (2/3) 6
√

3

12π
+

1

140ζ 4
+ O(ζ −10). (C 28)

The term of order ζ 3 will be ubiquitous in particular solutions at every order, simply
arising from a first constant of integration. This can always be removed by invoking
a homogeneous solution.

Comparison of these results with the exact solution in (B 4) shows that Chan’s pre-
scription for the wall to intermediate layer match is not quite complete in two respects:

(i) If the amplitude scaling for the wall is taken as

A1 =
g2

1

α1

√
log 1/g1,

then the second term in ω̂1,2 is unaccounted for following the previously established
result that γ1 = c from the match for ω̂1,1.†

(ii) Once again we have terms which go unmatched in the asymptotic expansion
of the particular solution of the wall layer (C 28), which have no opposite number
from the inner limit but which also cannot be eliminated by appeal to homogeneous
solutions.

The resolution of the first point requires that we return to (B 4). Identification of the
amplitude parameter A1 in Chan’s equation (42) is predicated on the g1 dependence
of the coefficient c̃1,0 in the inner limit of the middle layer solution. This is formally
a divergent series, which begins

A1 ∼ 1

α1

g2
1

(
log

1

g1

)1/2 [
1 +

c − (1/8) log log 1/g1

log 1/g1

+ . . .

]
. (C 29)

The character of this should not be wholly surprising; the value of c is the signature of
the global match to the interior solution (albeit one that is challenging to determine),
and the asymptotic expansion of the innermost boundary layer must in some fashion
reflect that. Indeed the want of any such relation in the original exposition is one of
its most curious features. Fortunately, the role of this parameter is purely to establish
a reference scale; nothing in the results above for (ω̂,θ̂ ) is directly affected, it is
only when the explicit match is effected that the full series must be used. With this
replacement, the apparent anomaly in the matching of ω̂1,2 is resolved.

Resolution of the second point, a match to the linear and constant terms in (C 28),
is now a familiar exercise with the free-slip case acting as a guide. The equations
are simply the homogeneous form of (C 10)–(C 11). The origin is again an irregular
singular point. Prompted by the greater complication of no-slip, we here seek only
the leading term for each of the eight homogeneous solutions. For this it suffices to

† Notice the distinction with free-slip: there the identification of γ3 with the term νc3 led to an
unexpected log Ra contribution owing to c3 being a scale parameter. Here the single parameter c
plays no special role in the expansion and the term it induces in the boundary layer is unchanged
in order.
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let ω̊1,0 = ξ 2
√

log 1/ξ . Each solution has a first term of the form ξµ(log 1/ξ )ν for
µ = [0, 1, 2, 3]. The corresponding ν are [±1/6, ±1/2, ±1/2, ±1/6]. The inner limits
of the first four, that is for µ = 0, 1, are candidates for the required match.

But, as previously anticipated, the required constituents must be composed so as to
eliminate the four growing exponentials in the far field. As for matching, all that mat-
ters is the value of µ, not ν, and this process will identify a subspace of solutions we can

label as ω̊
(k)∗

1,1 for k = 1..4 with inner limit ζ k−1. Each will project on all four decaying
exponentials. This match is unlike free-slip in that there are no induced wall correc-
tions. While conceptually easy, producing the equivalent of (C 17) is more difficult in
practice. We have first to compute the coefficients that accompany the two solutions

with the required inner limits, ω̊(1,2)∗

1,1 . In the case of ω̊
(1)∗

1,1 , for example, this is of the form

λ1 =
�4 (2/3) 6

√
3

12π

[
1 +

(
log log 1/g1

24
+

43

108
− c

3

)
(log 1/g1)

−1

+ O

((
log log 1/g1

log 1/g1

)2)]−1[
λ

(1)
1/6(log 1/g1)

1/6 + λ
(1)
−1/6(log 1/g1)

−1/6
]
. (C 30)

The computation is a two-step process. First we determine the constants λ
(1)
±1/6,

which derive from the numerical connection problem outlined above. Next, the series
above must be carried out well beyond the few terms shown since, for values of Ra
reasonably within reach, g1 is of the order of 10−2 and the ratio of logs is about 1/3.
Even apart from the marginal accuracy in the present estimate of c in the second
half of appendix B, the use of (C 30) immediately reopens the issue of summability.
It may be that a comparatively few terms in (C 30), in conjunction with Padé
summation, could provide the needed accuracy (and similarly for the coefficient of

ω̊
(2)∗

1,1 ). In view of the diverse sources of numerical uncertainty, we have not explored
this possibility although it should be added that, if one could show explicit agreement
of this expansion at the level of agreement of the curves in figure 24, this would at
once confirm the postulated solution (B 4), the associated value of c, and, precisely
as for free-slip, the global consistency of the midlayer problem as posed.

Insofar as Chan’s leading-order prediction of the 1-α heat flux,

Nu< c Ra3/10(log Ra)1/5,

is concerned, the main modification of that argument is driven by the renormalization
of the expansion parameter noted above. This induces only additive corrections to the
prefactor; it does not change the leading order. Figure 2 in the main text, relying on
the form suggested here for such corrections, gives reasonable evidence that these are
as indicated. Additional terms of a similar character, comparable in origin to those
explicitly exhibited in (C 7) for free-slip, certainly emerge from the match above as
well, though their constructive derivation appears incomparably more difficult.

Appendix D. Expansions for the 2-α free-slip solution
D.1. The indicial equations

We look for a solution maximizing F using the two-wavenumber ansatz

[ w(x), θ(x) ] =
√

2

2∑
n=1

[ wn(z), θn(z) ] cos αnx. (D 1)
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Figure 26. Schematic relation of the boundary layers.

Based upon the 1-α analysis and numerical computations for the 2-α branch, we look
for a three-layer 2-α solution where α1 = O(Raa1 ) and α2 = O(Raa2 ) (a2 > a1) as
Ra → ∞. The second wavenumber solution [w2(z), θ2(z)] appears to be arranged over
two layers: an innermost (third) layer of thickness O(Ra−a3 ), within which we define

ŵ2 = Ra−c2w2, θ̂2 = Ra−d2θ2, ζ3 = Raa3z, (D 2)

and an intermediate (second) layer of thickness O(Ra−a2 ) (a2 < a3) where ∂/∂z =
O(α2), within which we define

w̃2 = Ra−e2w2, θ̃2 = Ra−f2θ2, ζ2 = Raa2z. (D 3)

The scalings are chosen so that the fields marked with a caret or tilde are O(1).
The first wavenumber solution [w1(z), θ1(z)] is arranged over the intermediate layer

and an outer (first) layer of thickness O(Ra−a1 ), but the latter is the interior hence
a1 = 0, as in the 1-α solution, once again reflecting the O(1) saturation of the lowest
wavenumber. In the intermediate layer, we define

ŵ1 = Ra−c1w1, θ̂1 = Ra−d1θ1, (D 4)

and in the interior

w̃1 = Ra−e1w1, θ̃1 = Ra−f1θ1, ζ1 = Raa1z. (D 5)

For consistency we also define O(1) wavenumbers α̃1 = Ra−a1α1 and α̂2 = Ra−a2α2.
Given that a1 = 0, there are then ten indices to find in order to fix the asymptotic
scaling of the solution and, in turn, the scaling for the Nusselt number. This is our
objective rather than a complete solution for each variable in each layer. The diagram
in figure 26 shows the relation of the fields. Six of the ten equations needed can
either be anticipated a priori or else discovered by cursory examination of numerical
results. The remaining four equations are determined by matching of inner and outer
expansions. While matching wn is elementary, the matches for θn are not. The match of

θ̂2 to θ̃2 is particularly sensitive. A numerical method suited to its diagnosis is outlined
in Appendix A, culminating in equation (A 14), from which the determination of the
needed constituents follows. To the extent that each match for θn is resolved strictly by
appeal to numerical evidence, the logic in this section is incomplete but the arguments
required to fill in the gaps would be out of proportion to the largely formal gain in
rigour.

The numerical evidence is highly suggestive that wθ ≈ 1 everywhere except in the
innermost layer, where wθ rises smoothly from 0 to 1. This implies F = O(Raa3 ), so we

define F̂ = FRa−a3 . It will turn out as well for consistency that (1 − wθ) = O(λ/F ) =
O(Ra−a3 ), with considerable consequences for the solution in the intermediate layer.
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In the innermost layer, the equations for ŵ2 and θ̂2 are

Ra4a3−2a2+2c2 ŵIV
2 = α̂2

2 θ̂2 , (D 6)

Raa3−1−2c2
1

F̂
θ̂V I
2 + [(1 − ŵ2θ̂2)ŵ2]

IV + (1 − ŵ2θ̂2)ŵ
IV
2 = 0. (D 7)

As in the 1-α solution, we take the leading balance in the ŵ2 equation to be ŵIV
2 = 0

(which gives only an inequality for the indices) and the last term in equation (D7)
drops out as before. Similarly, as we then expect ŵ2 = cζ3, in order to recover (7.14),
we take

c2 = 1
2
(a3 − 1). (D 8)

The distinction in the 2-α problem will be seen in the need for two of the four
solutions of (A 5) in order to effect a proper match.

The equations in the intermediate layer for w̃2 and ŵ1 to leading order are

Ra2a2+e2−f2

[
d2

dζ 2
2

− α̂2
2

]2

w̃2 = α̂2
2 θ̃2, (D 9)

and

ŵIV
1 = 0. (D 10)

An interesting balance in the first equation requires that

2a2 = f2 − e2 (D 11)

and we so assume. The alternative possibility, that w̃2 satisfies a homogeneous
equation, can quickly be ruled out. (As above, assumption of the form of the equation
for ŵ1 provides only an inequality for the indices. Both inequalities are found to be
satisfied after the fact.)

The interior equation for w̃1 is

Ra2a1+e1−f1

[
d2

dζ 2
1

− α̃2
1

]2

w̃1 = α̃2
1 θ̃1. (D 12)

Again we look for a distinguished balance of terms and thus require

2a1 = f1 − e1. (D 13)

For the wall and interior regions, that wθ ≈ 1 immediately implies

d2 = −c2 and e1 = −f1. (D 14)

In the interior we must also have

w̃1θ̃1 = 1. (D 15)

In the intermediate layer, where

wθ = Rad1+c1w̃2θ̃2 + Rae2+f2ŵ1θ̂1, (D 16)

and we observe that w̃2θ̃2 and ŵ1θ̂1 � O(1), it follows first that

e2 + f2 = c1 + d1, (D 17)

and in addition that

w̃2θ̃2 = −ŵ1θ̂1. (D 18)
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Where (D 15) serves to define θ̃1, (D 18) reveals an unavoidable ambiguity that our
simple approach to determining the indicial exponents alone cannot resolve. The

equations for θ̃2 and θ̂1 are not closed, as they each require there be a finite residual
from the quantity 1 − wθ − λ/F , but enforcing (D18) precludes representing this in
terms of the variables given. This difficulty is addressed in the next section.

The remaining four indicial equations arise through matching. The elementary inner
equations for w1,2 render two of these matches immediate. For w2, since ŵ2 emerges
out of the intermediate layer like ζ3 this must match onto Raa3−a2ζ2 and hence a
match to w̃2 requires

e2 = a3 − a2 + c2. (D 19)

Similarly for w1, where ŵ1 emerges out of the intermediate layer like ζ2, we have

e1 = a2 − a1 + c1. (D 20)

On first view, the numerical solutions suggest that θ̂2 → constant as ζ3 → ∞, rather
than the 1-α asymptotic behaviour of 1/ζ3. While the governing equation does admit

such a solution, namely θ̂ (2) given in (A 3), this interpretation of the outer limit of
the wall layer is not correct. Examining a sequence of numerical solutions with the

aid of the fitting procedure defined by (A 14) shows that θ̂2 consists of two of the
four solutions of (A 1); the ‘normal’ solution with an asymptotic limit of 1/ζ3, but

also an exact elementary solution, θ̂2 = ζ3, of smaller order within the wall layer.
But, on passing to an outer limit expressed in terms of ζ2 for the match, the second
of these is amplified by Ra2(a3−a2) relative to the first, and the role of dominant and
subdominant interchanged. Strictly this should lead back to revision of our initial
ansatz in equations (D 2)–(D 5), but we defer a formal development in that direction
to the next section, where the intermediate layer in particular is carefully addressed.
Arguing here more informally, if the subdominant contribution in the wall layer is

assumed to scale as Rad2−δ , then if θ̂2 is to match onto θ̃2, we require

f2 = d2 − δ + a3 − a2. (D 21)

In lieu of producing an eleventh equation to close the set, we shall assume that
δ = a3 − a2, an assertion anyway verified by (and also originally discovered from) the
fitting procedure defined by (A 14).

The direct consequence of θ̂2 tending to ζ3 is that w2θ2 continues to increase beyond

1 as ζ3 → ∞ and consequently ŵ1θ̂1 has to grow from 0 to compensate for it. This is
the most obvious feature in the numerical calculations, with a typical result shown in
figure 17, and it bears emphasizing that this overshoot, which we shall shortly infer to
scale as Ra1/5, is without precedent in the literature on upper bounds. Indeed owing
to the divergence in the individual products, this feature is also the reason for which
numerical solutions fail: the needed cancellation transcends the capacity of double
precision to resolve, setting a decidedly finite limit on the possible range of Ra. By
contrast, solutions with no-slip boundary conditions exhibit no inherent constraint;
attaining larger Ra simply requires more resolution.

Finally, we look to the match for θ1. Since ŵ1θ̂1 has to decrease down to O(1) but

ŵ1 ∼ ζ2 as ζ2 → ∞, θ̂1 must decrease faster than 1/ζ2. Here we face the difficulty

earlier noted, that the equation for θ̂1 is not closed in terms of the variables available,
so we cannot derive its limiting behaviour by dominant balance (for example). As
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Figure 27. Confirmation of the boundary layer scalings deduced in § D.1. Results for

Ra = 2.315 × 1010 and 6.093 × 1011 are plotted according to the scalings θ̂2 = Ra−3/10θ2

and θ̂1 = Ra−2/5θ1, with boundary layer coordinates ζ3 = Ra2/5z and ζ2 = Ra1/5z respectively.

with our inference just above about δ, we are forced to rely on numerical evidence,

which supports a simple algebraic decay of θ̂1 ∼ 1/ζ 2
2 . Assuming this, it follows that

f1 = d1 − 2(a2 − a1). (D 22)

This is the tenth and final indicial equation.
Collecting all ten equations, the scaling indices that result are

a2 = −c1 = 1
5
, a3 = d1 = 2

5
, f2 = d2 = −c2 = 3

10
, (D 23)

e1 = f1 = 0, e2 = − 1
10

, (D 24)

implying that for the 2-α solution

Nu ∼ Ra2/5 as Ra → ∞. (D 25)

Numerical corroboration for these scalings is very good as shown in figure 27 for θ̂1

and θ̂2, as well as figure 14, showing Nu.

D.2. Intermediate layer

The aim in this section is not – as in Appendix C – a detailed dissection of matching,
but only to exhibit an ordered expansion that could in principle permit such a match
to the wall (and interior). The point here is that the extreme degree of cancellation in
1 − wθ for 2-α free-slip leads to a remarkably intricate set of coupled simultaneous
equations.
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Figure 28. Successive order balances in the delicate cancellation of ŵ1θ̂1 against w̃2,θ̃2.

Following on from the results for the indicial exponents derived above, we are led
to expansions of the form

w̃2 = Ra−1/10

∞∑
k=0

w̃2,k(ζ2) εk, θ̃2 = Ra3/10

∞∑
k=0

θ̃2,k(ζ2) εk, (D 26)

ŵ1 = Ra−1/5

∞∑
k=0

ŵ1,k(ζ2) εk, θ̂1 = Ra2/5

∞∑
k=0

θ̂1,k(ζ2) εk, (D 27)

where ε = Ra−1/5. As there can be no confusion within this section, we confine the
notation to a single subscript for α.

In this instance we require that 1 − w̃2θ̃2 − ŵ1θ̂1 be O(Ra−2/5), which gives us three
algebraic relations that must be satisfied. These are given by

ŵ1,0θ̂1,0 + w̃2,0θ̃2,0 = 0, (D 28)

ŵ1,0θ̂1,1 + ŵ1,1θ̂1,0 + w̃2,0θ̃2,1 + w̃2,1θ̃2,0 = 1, (D 29)

ŵ1,0θ̂1,2 + ŵ1,1θ̂1,1 + ŵ1,2θ̂1,0 + w̃2,0θ̃2,2 + w̃2,1θ̃2,1 + w̃2,2θ̃2,0 = 0. (D 30)

Figure 28 shows the extent to which these relations can be verified by the available
numerical results. In particular, absolute accuracy and the concomitant restriction
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of the dynamic available range of Ra limit the number of components in (D 26)–
(D27) that can be determined by extrapolation. Unavoidably there is a successive
degradation of accuracy for increasing index. Hence, while the first relation is satisfied
to better than graphical precision, in the second there is perceptible variation about
the expected constant value of unity and figure 28(c) provides only a qualitative
sense of the cancellation at O(Ra−1/5). The extrapolation for ŵ1,k and the other
variables is not in any way conditioned on the observed cancellation (except indirectly
through suggesting the overall scaling of the expansion) and hence this furnishes an
independent test of the proposed algebraic relations. While the errors in figure 28(c)
raise the prospect that perhaps the cancellation is not complete at that order, that the
residue is, rather, an artifact of extrapolation is demonstrated by simply computing
1 − wθ using the full fields, from which result it is unambiguously found that the
residual scales as Ra−2/5.

The w equations are

D4ŵ1,0 = 0, (D 31)

D4ŵ1,1 = α2
1 θ̂1,0, (D 32)

D4ŵ1,2 = α2
1(θ̂1,1 + 2D2ŵ1,0), (D 33)

and

∇4
2w̃2,j = α2

2 θ̃2,j , j = 0, 1, 2, (D 34)

where ∇2k
2 = (D2 − α2

2)
k . But the only elementary solution to emerge from this is

ŵ1,0 = ĉ1,0 ζ2.
The θ equations are

F̂ −1D6θ̂1,0 + D4(ρ0ŵ1,0) = 0, (D 35)

F̂ −1D6θ̂1,1 + D4(ρ0ŵ1,1 + ρ1ŵ1,0) + ρ0θ̂1,0 = 0, (D 36)

F̂ −1D6θ̂1,2 + D4(ρ0ŵ1,2 + ρ1ŵ1,1 + ρ2ŵ1,0) + ρ0θ̂1,1 + ρ1θ̂1,0

= 2α2
1(D

2(ρ0ŵ1,0) + (ρ0 − 1)D2ŵ1,0), (D 37)

∇4
2(ρ0w̃2,0) + ρ0θ̃2,0 = 0, (D 38)

F̂ −1∇6
2θ̃2,0 + ∇4

2(ρ0w̃2,1 + ρ1w̃2,0) + ρ0θ̃2,1 + ρ1θ̃2,0 = 0, (D 39)

F̂ −1∇6
2θ̃2,1 + ∇4

2(ρ0w̃2,2 + ρ1w̃2,1 + ρ2w̃2,0) + ρ0θ̃2,2 + ρ1θ̃2,1 + ρ2θ̃2,0 = 0, (D 40)

where, to facilitate analysis, we have introduced a critical auxiliary variable, ρ, defined
by

1 − ŵ1θ̂1 − w̃2θ̃2 − λ/F = Ra−2/5

∞∑
k=0

ρk(ζ2)ε
k. (D 41)

(Note that the last parameter in the problem, λ, must also be expanded, that is

λ0 =
〈|∇θ̂2,0|2〉

2Ra
− 1,

with subsequent terms following in an obvious fashion. But these constants are
subsumed in the present discussion by constants of integration associated with the ρk

and need only be incorporated at the point of carrying out a detailed match of the
layers, which is, as earlier indicated, beyond the purpose of the discussion here.)

The fifteen equations (D 28)–(D 40) for w, θ and ρ constitute a minimal coupled
nonlinear set, that is, the interactions of the intermediate layer seem no further
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Figure 29. Numerical confirmation of one result for the proposed midlayer expansion.

reducible. Determination of the numerous coefficients in homogeneous solutions of
the governing equations has to be done in concert with matching to expansions
of appropriate degree in both the wall and the interior layers. This is a project
well beyond the scope of this paper. Instead, we conclude this section with several
elementary analytic and numerical observations.

As for (D 31), so too in (D35) an elementary result suggests itself, namely

ρ0(ζ2) = −D2θ̂1,0

F̂ ŵ1,0

,

and from this one can eliminate ρ0 as an unknown. Figure 29 compares this prediction
to the actual ρ0. The similarity is evident enough, but with a roughly constant offset
remaining between the two. The offset suggests that we allow for homogeneous
solutions, that is,

ρ0(ζ2) = −D2θ̂1,0

F̂ ŵ1,0

+ c1 + c2/ζ2, (D 42)

on the presumption that matching will determine c1 and c2 (on numerical evidence
there is no need to invoke the remaining two homogeneous solutions).

The computed solution provides a variety of results, some easily reconciled with
the above scheme and some not. One of the easier numerical observations is the fit

w̃2,0 ≈ c1α2ζ2 e−α2ζ2 − c2 e−α2ζ2,

where c1,2 are order one. These are simply the homogeneous solutions of (D 34).
A second, purely empirical, fit is

θ̃2,0 = eµk2ζ2, ζ2 → ∞,

where µ ≈ −1.45 + 2.12i. But given (D34), this means that there must be some of
this oscillatory exponential also in w̃2,0 in addition to the homogeneous solutions
noted. While it is awkward trying to subtract the homogeneous terms, by computing
(D2 − α2)

2w2, these are annihilated and the (oscillatory) remainder does coincide with



222 G. R. Ierley, R. R. Kerswell and S. C. Plasting

θ2. (Strictly speaking this numerical comparison of raw fields is a superposition of all
orders in (D 34) but clearly the first term dominates the comparison.)

It appears that (D 32) holds accurately through the intermediate layer. By

integrating θ̂1,0 four times, one can discriminate the homogeneous and particular
solutions in ŵ1,1. In any event the interior equation

(D2 − 1)2w̃1,0 = 1/w̃1,0

does not satisfy free-slip boundary conditions (as indicated by the numerical results)
and the series solution is hence not the 1-α solution in (B 2). This has a bearing
on the point central to the thesis of this paper, that this alteration in the boundary
condition is a smooth perturbation of the solution in (B 2). Establishing the explicit
details is the key step required to show that α1 → 1.9662 for the 2-α solution. More
specifically, the altered boundary condition arises either directly owing to a particular
solution of (D 32), whose outer limit is ζ 2

2 , or from a homogeneous solution required
at the origin to make the particular solution satisfy free-slip boundary conditions.

For small ζ2, a power series expansion of (D 28)–(D 40) could be carried out
to confirm aspects of the match to the inner layer. Similar analysis can probably
establish the relevant asymptotic relations ζ2 → ∞, in particular a determination of
the characteristic polynomial, one of whose root pairs is (µ, µ∗) observed above.

What is lacking is a rational deductive derivation for the origin of (D 28-D 40) rather
than, as here, a numerically guided search for a set of relations whose consistency is
shown after the fact.

D.3. Second wall layer

Expanding solutions in the innermost (Ra−2/5) layer, we have

ŵIV
2,0 = ŵIV

2,1 = 0,

for which the relevant solutions are each c ζ3 for a suitable constant c.
The equation for θ̂2,0 follows from simplification using the indicated solution for

ŵ2,0:

Lθ̂2,0 ≡ 1

F̂

d6θ̂2,0

dζ 6
3

− d4

dζ 4
3

((1 − ζ3 θ̂2,0)ζ3) = 0.

The solution singled out is θ̂2,0 = c θ̂ (3) (cf. Appendix A for details).

At next order, θ̂2,1 satisfies the inhomogeneous equation

Lθ̂2,1 = 2
d4

dζ 4
3

(ζ 2
3 θ̂2,0). (D 43)

While the particular solution for this has an involved integral representation, we only

need to note that the right-hand side vanishes for θ̂2,0 ∼ 1/ζ3 and it is, rather, the

homogeneous solutions that dominate the outer limit, in particular, θ̂2,1 ∼ ζ3.
The significance of this is precisely its relation to the anomalously large value

assumed by the individual wave components in the variational solution; what in the
innermost layer is a subdominant solution becomes in the outer limit the dominant
component for matching to the ζ2 layer.
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Appendix E. Numerical issues
E.1. Spectral formulation

Computation of the optimal solution is problematic with a Chebyshev matrix
representation of D4, which is unstable at moderate values of Ra. A set of orthogonal
polynomials which are tailor-made for such a problem are Jacobi polynomials, for
which the Galerkin projection of D4 is an unconditionally stable matrix for all Ra.†
The supplementary task of checking SC-stability was performed by an eigenvalue
code solving system (3.9) for a broad sweep of wavenumbers.

We consider here only the solution of the 1-α optimal equations for simplicity of
notation. The multi-α is an easy extension of this programme once equations (3.14)
and (3.15) are included into the analysis.

If we denote by L the bi-Laplacian (D2 − α2)2 then optimal equations (3.3) and
(3.4) can be rewritten as

q = −λL−1(θ̂ τ ′) and w = Raα2L−1(θ̂ ). (E 1)

In this case, after some algebra, the non-scalar optimal equations (3.2), (3.3), (3.4)
and (3.6) can be reduced to the single equation

2(D2 − α2)θ̂ + 2(λ + 〈wθ̂〉)w − w2θ̂ − Raα2L−1(wθ̂2) = 0, (E 2)

where w depends linearly on θ̂ by relation (E 1) and therefore its solution is contingent
on pre-calculation of the inverse bi-Laplacian. Equation (3.7) for λ can be substituted
explicitly into this equation. The system of optimal equations is then reduced to one
spatial equation and one scalar equation, namely (E 2) and (3.14).

A strategy for inverting powers of the Laplacian using the spectral method with
Jacobi polynomials and Galerkin projection was first presented in Ierley (1997).
Application of the same program to horizontal convection at large Ra has since
appeared in Siggers, Kerswell & Balmforth (2004).

We expand the temperature fluctuation field in the Jacobi polynomials P
(1,1)
k , namely

θ̂(x) = (1 − x2)

K∑
k=0

θ̂kP
(1,1)
2k (x),

where x = 2z − 1 and we only select even polynomials because of the assumed
symmetry in the optimal solution. The expansion of w (and similarly q) for no-slip
boundaries is

w(x) = (1 − x2)2
K∑

k=0

wkP
(2,2)
2k (x),

and for free-slip boundaries

w(x) = (1 − x2)

K∑
k=0

(1 − γ2k x2)wkP
(1,1)
2k (x), (E 3)

where

γj =
j (j + 3) + 2

j (j + 3) + 10
.

† In the case presented here, the formulation reduces to Legendre polynomials following the use
of various standard identities. But the same idea applies to more general operators and then such
a reduction does not generally obtain.
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These representations for w and θ̂ have the boundary conditions built in. The form in
(E 3) is a special case. For the more general boundary condition introduced in (7.18),
γ takes the form

γj =
(1 − β) (j 2 + 3j ) + 2

(1 − β) (j 2 + 3j + 8) + 2
. (E 4)

Equation (E 2) is posed as a finite-dimensional approximation by taking Galerkin
projections of the derivative operators, using LU decomposition to invert L, and
tensor contractions to form the cubic terms. The derivative matrices are symmetric
and sparse. For example, the bi-Laplacian L is a penta-diagonal matrix. The most
expensive operations are calculating the cubic nonlinearity in equation (E 2), such as

w2θ̂ , since the Galerkin projection would seem to require a fourth-order contraction
with a tensor having elements defined (for no-slip boundaries) by

cijkl =

∫ 1

−1

dx (1 − x2)6P (2,2)
i (x) P

(2,2)
j (x) P

(1,1)
k (x) P

(1,1)
l (x).

Given that the basis sets have, for some extreme cases, included even polynomials to
degree m = 1800, this approach is not remotely feasible, even with some reductions
based on symmetries and other selection rules.

This difficulty can be partly overcome by performing sequential contractions with
two third-rank tensors but the overhead for the initial computation of tensor elements
with Gaussian quadrature of order 3m/2 is still burdensome, and storage scales as
O(m3).

It is preferable here simply to revert to a pseudospectral treatment of cubic
nonlinearities since the operations count and storage requirements are both O(m2),
a small fraction of the O(m3) requirements for matrix inversion at each step of
Newton’s method.† We elected to use a conventional forward transform. There is a
potential gain by switching to the O(m(log m)2) (Driscoll & Healy 1994) fast Legendre
transform but the net speedup would be slight. For accuracy and consistency of the
inverse transform, it is important to use a kernel consisting of (1 − x2)P (1,1)

j (x) even
though this means the coefficients in the resulting expansion then require inversion of

a (symmetric) tridiagonal form. (The basis set for θ̂ diagonalizes the second derivative
operator, not the unit operator.)

In developing a continuation code for this problem, the analytic Jacobian for the
optimal equations was derived and used in the multi-dimensional Newton iteration
scheme. This saved a good deal of CPU time over the alternative of finite-difference
approximation of the Jacobian matrix. While computing the Jacobian matrix is a
particularly laborious exercise in tensor manipulations, the algebra can be checked
against a finite-difference approximation. The α-derivative of L−1 for instance, is

d

dα
(D4 − 2α2D2 + α4I )−1 = L−1(−4αD2 + 4α3I )L−1,

where the D4 and D2 here represent derivative matrices and I is defined by

Iij =

∫ 1

−1

dx (1 − x2)4P (2,2)
i (x)P (2,2)

j (x).

† In principle the rank one updates of quasi-Newton methods can reduce the latter overhead but
our experience of these with spectral methods has not proved encouraging.
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Figure 30. An indication of unanticipated structure in the variational solution:
(a) free-slip, (b) no-slip.

E.2. Secondary bifurcations

In closing we remark that there is an unanticipated feature of the variational problem
seen for the 3-α free-slip and 4-α no-slip branches. This is the existence of secondary
bifurcations within the same k-α solution space, as illustrated in figure 30 by dashed
lines. For graphical clarity, wavenumbers have been rescaled as labelled. Values of
Nu are systematically less on the side branches, so the overall picture presented
in this section remains intact, but this is yet another indication of the possible
complications that can ensue with computed variational solutions for upper bound
problems. In particular, without manual intervention, the dashed line was the realized
numerical solution in both cases. We have examined the neutral eigenfunction for
each bifurcation but in neither case is the structure revealing. It is important to bear
in mind that the observed subsidiary bifurcations are here a nuisance only insofar
as one is pursuing an asymptotic characterization of the given solution branch; the
primary bifurcation to the next SC-neutral branch has already taken place, although
it does not seem possible rigorously to preclude that an exchange of SC-neutrality
within a given k-α solution space might in principle occur via such a bifurcation.
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